Metamath Proof Explorer


Theorem cnvss

Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998) (Proof shortened by Kyle Wyonch, 27-Apr-2021)

Ref Expression
Assertion cnvss A B A -1 B -1

Proof

Step Hyp Ref Expression
1 ssbr A B y A x y B x
2 1 ssopab2dv A B x y | y A x x y | y B x
3 df-cnv A -1 = x y | y A x
4 df-cnv B -1 = x y | y B x
5 2 3 4 3sstr4g A B A -1 B -1