Metamath Proof Explorer


Theorem coe1fv

Description: Value of an evaluated coefficient in a polynomial coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypothesis coe1fval.a A=coe1F
Assertion coe1fv FVN0AN=F1𝑜×N

Proof

Step Hyp Ref Expression
1 coe1fval.a A=coe1F
2 1 coe1fval FVA=n0F1𝑜×n
3 2 fveq1d FVAN=n0F1𝑜×nN
4 sneq n=Nn=N
5 4 xpeq2d n=N1𝑜×n=1𝑜×N
6 5 fveq2d n=NF1𝑜×n=F1𝑜×N
7 eqid n0F1𝑜×n=n0F1𝑜×n
8 fvex F1𝑜×NV
9 6 7 8 fvmpt N0n0F1𝑜×nN=F1𝑜×N
10 3 9 sylan9eq FVN0AN=F1𝑜×N