Metamath Proof Explorer


Theorem cofid1a

Description: Express the object part of ( G o.func F ) = I explicitly. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofid1a.i I = id func D
cofid1a.b B = Base D
cofid1a.x φ X B
cofid1a.f φ F D Func E
cofid1a.g φ G E Func D
cofid1a.o φ G func F = I
Assertion cofid1a φ 1 st G 1 st F X = X

Proof

Step Hyp Ref Expression
1 cofid1a.i I = id func D
2 cofid1a.b B = Base D
3 cofid1a.x φ X B
4 cofid1a.f φ F D Func E
5 cofid1a.g φ G E Func D
6 cofid1a.o φ G func F = I
7 6 fveq2d φ 1 st G func F = 1 st I
8 7 fveq1d φ 1 st G func F X = 1 st I X
9 2 4 5 3 cofu1 φ 1 st G func F X = 1 st G 1 st F X
10 4 func1st2nd φ 1 st F D Func E 2 nd F
11 10 funcrcl2 φ D Cat
12 1 2 11 3 idfu1 φ 1 st I X = X
13 8 9 12 3eqtr3d φ 1 st G 1 st F X = X