Metamath Proof Explorer


Theorem coires1

Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011) (Revised by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion coires1 AIB=AB

Proof

Step Hyp Ref Expression
1 cocnvcnv1 A-1-1I=AI
2 relcnv RelA-1-1
3 coi1 RelA-1-1A-1-1I=A-1-1
4 2 3 ax-mp A-1-1I=A-1-1
5 1 4 eqtr3i AI=A-1-1
6 5 reseq1i AIB=A-1-1B
7 resco AIB=AIB
8 6 7 eqtr3i A-1-1B=AIB
9 rescnvcnv A-1-1B=AB
10 8 9 eqtr3i AIB=AB