Metamath Proof Explorer


Theorem confun5

Description: An attempt at derivative. Resisted simplest path to a proof. Interesting that ch, th, ta, et were all provable. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypotheses confun5.1 φ
confun5.2 φψψ
confun5.3 ψφχ
confun5.4 χθφθψ
confun5.5 τχθ
confun5.6 η¬χχ¬χ
confun5.7 ψ
confun5.8 χθ
Assertion confun5 χητ

Proof

Step Hyp Ref Expression
1 confun5.1 φ
2 confun5.2 φψψ
3 confun5.3 ψφχ
4 confun5.4 χθφθψ
5 confun5.5 τχθ
6 confun5.6 η¬χχ¬χ
7 confun5.7 ψ
8 confun5.8 χθ
9 7 3 ax-mp φχ
10 1 9 ax-mp χ
11 10 atnaiana ¬χχ¬χ
12 bicom1 η¬χχ¬χ¬χχ¬χη
13 6 12 ax-mp ¬χχ¬χη
14 13 biimpi ¬χχ¬χη
15 11 14 ax-mp η
16 bicom1 τχθχθτ
17 5 16 ax-mp χθτ
18 17 biimpi χθτ
19 8 18 ax-mp τ
20 15 19 2th ητ
21 ax-1 ητχητ
22 20 21 ax-mp χητ