| Step |
Hyp |
Ref |
Expression |
| 1 |
|
confun5.1 |
⊢ 𝜑 |
| 2 |
|
confun5.2 |
⊢ ( ( 𝜑 → 𝜓 ) → 𝜓 ) |
| 3 |
|
confun5.3 |
⊢ ( 𝜓 → ( 𝜑 → 𝜒 ) ) |
| 4 |
|
confun5.4 |
⊢ ( ( 𝜒 → 𝜃 ) → ( ( 𝜑 → 𝜃 ) ↔ 𝜓 ) ) |
| 5 |
|
confun5.5 |
⊢ ( 𝜏 ↔ ( 𝜒 → 𝜃 ) ) |
| 6 |
|
confun5.6 |
⊢ ( 𝜂 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ) |
| 7 |
|
confun5.7 |
⊢ 𝜓 |
| 8 |
|
confun5.8 |
⊢ ( 𝜒 → 𝜃 ) |
| 9 |
7 3
|
ax-mp |
⊢ ( 𝜑 → 𝜒 ) |
| 10 |
1 9
|
ax-mp |
⊢ 𝜒 |
| 11 |
10
|
atnaiana |
⊢ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) |
| 12 |
|
bicom1 |
⊢ ( ( 𝜂 ↔ ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ) → ( ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ↔ 𝜂 ) ) |
| 13 |
6 12
|
ax-mp |
⊢ ( ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) ↔ 𝜂 ) |
| 14 |
13
|
biimpi |
⊢ ( ¬ ( 𝜒 → ( 𝜒 ∧ ¬ 𝜒 ) ) → 𝜂 ) |
| 15 |
11 14
|
ax-mp |
⊢ 𝜂 |
| 16 |
|
bicom1 |
⊢ ( ( 𝜏 ↔ ( 𝜒 → 𝜃 ) ) → ( ( 𝜒 → 𝜃 ) ↔ 𝜏 ) ) |
| 17 |
5 16
|
ax-mp |
⊢ ( ( 𝜒 → 𝜃 ) ↔ 𝜏 ) |
| 18 |
17
|
biimpi |
⊢ ( ( 𝜒 → 𝜃 ) → 𝜏 ) |
| 19 |
8 18
|
ax-mp |
⊢ 𝜏 |
| 20 |
15 19
|
2th |
⊢ ( 𝜂 ↔ 𝜏 ) |
| 21 |
|
ax-1 |
⊢ ( ( 𝜂 ↔ 𝜏 ) → ( 𝜒 → ( 𝜂 ↔ 𝜏 ) ) ) |
| 22 |
20 21
|
ax-mp |
⊢ ( 𝜒 → ( 𝜂 ↔ 𝜏 ) ) |