Metamath Proof Explorer


Theorem atnaiana

Description: Given a, it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypothesis atnaiana.1 𝜑
Assertion atnaiana ¬ ( 𝜑 → ( 𝜑 ∧ ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 atnaiana.1 𝜑
2 1 bitru ( 𝜑 ↔ ⊤ )
3 pm3.24 ¬ ( 𝜑 ∧ ¬ 𝜑 )
4 3 bifal ( ( 𝜑 ∧ ¬ 𝜑 ) ↔ ⊥ )
5 2 4 aifftbifffaibif ( ( 𝜑 → ( 𝜑 ∧ ¬ 𝜑 ) ) ↔ ⊥ )
6 5 aisfina ¬ ( 𝜑 → ( 𝜑 ∧ ¬ 𝜑 ) )