Description: Given a, it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atnaiana.1 | |- ph | |
| Assertion | atnaiana | |- -. ( ph -> ( ph /\ -. ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | atnaiana.1 | |- ph | |
| 2 | 1 | bitru | |- ( ph <-> T. ) | 
| 3 | pm3.24 | |- -. ( ph /\ -. ph ) | |
| 4 | 3 | bifal | |- ( ( ph /\ -. ph ) <-> F. ) | 
| 5 | 2 4 | aifftbifffaibif | |- ( ( ph -> ( ph /\ -. ph ) ) <-> F. ) | 
| 6 | 5 | aisfina | |- -. ( ph -> ( ph /\ -. ph ) ) |