Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a implies b is false. (Contributed by Jarvin Udandy, 7-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aifftbifffaibif.1 | |- ( ph <-> T. ) |
|
| aifftbifffaibif.2 | |- ( ps <-> F. ) |
||
| Assertion | aifftbifffaibif | |- ( ( ph -> ps ) <-> F. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aifftbifffaibif.1 | |- ( ph <-> T. ) |
|
| 2 | aifftbifffaibif.2 | |- ( ps <-> F. ) |
|
| 3 | 1 | aistia | |- ph |
| 4 | 2 | aisfina | |- -. ps |
| 5 | 3 4 | pm3.2i | |- ( ph /\ -. ps ) |
| 6 | annim | |- ( ( ph /\ -. ps ) <-> -. ( ph -> ps ) ) |
|
| 7 | 6 | biimpi | |- ( ( ph /\ -. ps ) -> -. ( ph -> ps ) ) |
| 8 | 5 7 | ax-mp | |- -. ( ph -> ps ) |
| 9 | 8 | bifal | |- ( ( ph -> ps ) <-> F. ) |