Metamath Proof Explorer


Theorem aifftbifffaibif

Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a implies b is false. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypotheses aifftbifffaibif.1 ( 𝜑 ↔ ⊤ )
aifftbifffaibif.2 ( 𝜓 ↔ ⊥ )
Assertion aifftbifffaibif ( ( 𝜑𝜓 ) ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 aifftbifffaibif.1 ( 𝜑 ↔ ⊤ )
2 aifftbifffaibif.2 ( 𝜓 ↔ ⊥ )
3 1 aistia 𝜑
4 2 aisfina ¬ 𝜓
5 3 4 pm3.2i ( 𝜑 ∧ ¬ 𝜓 )
6 annim ( ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
7 6 biimpi ( ( 𝜑 ∧ ¬ 𝜓 ) → ¬ ( 𝜑𝜓 ) )
8 5 7 ax-mp ¬ ( 𝜑𝜓 )
9 8 bifal ( ( 𝜑𝜓 ) ↔ ⊥ )