Metamath Proof Explorer


Theorem conss2

Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011)

Ref Expression
Assertion conss2 A V B B V A

Proof

Step Hyp Ref Expression
1 ssv A V
2 ssv B V
3 ssconb A V B V A V B B V A
4 1 2 3 mp2an A V B B V A