Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | conss2 | ⊢ ( 𝐴 ⊆ ( V ∖ 𝐵 ) ↔ 𝐵 ⊆ ( V ∖ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssv | ⊢ 𝐴 ⊆ V | |
| 2 | ssv | ⊢ 𝐵 ⊆ V | |
| 3 | ssconb | ⊢ ( ( 𝐴 ⊆ V ∧ 𝐵 ⊆ V ) → ( 𝐴 ⊆ ( V ∖ 𝐵 ) ↔ 𝐵 ⊆ ( V ∖ 𝐴 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ⊆ ( V ∖ 𝐵 ) ↔ 𝐵 ⊆ ( V ∖ 𝐴 ) ) |