Metamath Proof Explorer


Theorem conss2

Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011)

Ref Expression
Assertion conss2 ( 𝐴 ⊆ ( V ∖ 𝐵 ) ↔ 𝐵 ⊆ ( V ∖ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ssv 𝐴 ⊆ V
2 ssv 𝐵 ⊆ V
3 ssconb ( ( 𝐴 ⊆ V ∧ 𝐵 ⊆ V ) → ( 𝐴 ⊆ ( V ∖ 𝐵 ) ↔ 𝐵 ⊆ ( V ∖ 𝐴 ) ) )
4 1 2 3 mp2an ( 𝐴 ⊆ ( V ∖ 𝐵 ) ↔ 𝐵 ⊆ ( V ∖ 𝐴 ) )