Metamath Proof Explorer


Theorem conss1

Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011)

Ref Expression
Assertion conss1 ( ( V ∖ 𝐴 ) ⊆ 𝐵 ↔ ( V ∖ 𝐵 ) ⊆ 𝐴 )

Proof

Step Hyp Ref Expression
1 difcom ( ( V ∖ 𝐴 ) ⊆ 𝐵 ↔ ( V ∖ 𝐵 ) ⊆ 𝐴 )