| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssel | 
							⊢ ( 𝐴  ⊆  𝐶  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ssel | 
							⊢ ( 𝐵  ⊆  𝐶  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝐶 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							pm5.1 | 
							⊢ ( ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 )  ∧  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝐶 ) )  →  ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 )  ↔  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝐶 ) ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 )  ↔  ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝐶 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							con2b | 
							⊢ ( ( 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  𝐵 )  ↔  ( 𝑥  ∈  𝐵  →  ¬  𝑥  ∈  𝐴 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( ( 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  𝐵 )  ↔  ( 𝑥  ∈  𝐵  →  ¬  𝑥  ∈  𝐴 ) ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							anbi12d | 
							⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 )  ∧  ( 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  𝐵 ) )  ↔  ( ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝐶 )  ∧  ( 𝑥  ∈  𝐵  →  ¬  𝑥  ∈  𝐴 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							jcab | 
							⊢ ( ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐶  ∧  ¬  𝑥  ∈  𝐵 ) )  ↔  ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 )  ∧  ( 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  𝐵 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							jcab | 
							⊢ ( ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐶  ∧  ¬  𝑥  ∈  𝐴 ) )  ↔  ( ( 𝑥  ∈  𝐵  →  𝑥  ∈  𝐶 )  ∧  ( 𝑥  ∈  𝐵  →  ¬  𝑥  ∈  𝐴 ) ) )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							3bitr4g | 
							⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐶  ∧  ¬  𝑥  ∈  𝐵 ) )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐶  ∧  ¬  𝑥  ∈  𝐴 ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eldif | 
							⊢ ( 𝑥  ∈  ( 𝐶  ∖  𝐵 )  ↔  ( 𝑥  ∈  𝐶  ∧  ¬  𝑥  ∈  𝐵 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							imbi2i | 
							⊢ ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝐶  ∖  𝐵 ) )  ↔  ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐶  ∧  ¬  𝑥  ∈  𝐵 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eldif | 
							⊢ ( 𝑥  ∈  ( 𝐶  ∖  𝐴 )  ↔  ( 𝑥  ∈  𝐶  ∧  ¬  𝑥  ∈  𝐴 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imbi2i | 
							⊢ ( ( 𝑥  ∈  𝐵  →  𝑥  ∈  ( 𝐶  ∖  𝐴 ) )  ↔  ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐶  ∧  ¬  𝑥  ∈  𝐴 ) ) )  | 
						
						
							| 15 | 
							
								10 12 14
							 | 
							3bitr4g | 
							⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝐶  ∖  𝐵 ) )  ↔  ( 𝑥  ∈  𝐵  →  𝑥  ∈  ( 𝐶  ∖  𝐴 ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							albidv | 
							⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝐶  ∖  𝐵 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  𝑥  ∈  ( 𝐶  ∖  𝐴 ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							df-ss | 
							⊢ ( 𝐴  ⊆  ( 𝐶  ∖  𝐵 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝐶  ∖  𝐵 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							df-ss | 
							⊢ ( 𝐵  ⊆  ( 𝐶  ∖  𝐴 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐵  →  𝑥  ∈  ( 𝐶  ∖  𝐴 ) ) )  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							3bitr4g | 
							⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐴  ⊆  ( 𝐶  ∖  𝐵 )  ↔  𝐵  ⊆  ( 𝐶  ∖  𝐴 ) ) )  |