Metamath Proof Explorer


Theorem conss2

Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011)

Ref Expression
Assertion conss2 AVBBVA

Proof

Step Hyp Ref Expression
1 ssv AV
2 ssv BV
3 ssconb AVBVAVBBVA
4 1 2 3 mp2an AVBBVA