Metamath Proof Explorer


Theorem constrcccl

Description: Constructible numbers are closed under circle-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses constrcccl.a φ A Constr
constrcccl.b φ B Constr
constrcccl.c φ C Constr
constrcccl.d φ D Constr
constrcccl.e φ E Constr
constrcccl.f φ F Constr
constrcccl.x φ X
constrcccl.1 φ A D
constrcccl.2 φ X A = B C
constrcccl.3 φ X D = E F
Assertion constrcccl φ X Constr

Proof

Step Hyp Ref Expression
1 constrcccl.a φ A Constr
2 constrcccl.b φ B Constr
3 constrcccl.c φ C Constr
4 constrcccl.d φ D Constr
5 constrcccl.e φ E Constr
6 constrcccl.f φ F Constr
7 constrcccl.x φ X
8 constrcccl.1 φ A D
9 constrcccl.2 φ X A = B C
10 constrcccl.3 φ X D = E F
11 constrcbvlem rec z V y | i z j z k z l z o p y = i + o j i y = k + p l k j i l k 0 i z j z k z m z q z o y = i + o j i y k = m q i z j z k z l z m z q z i l y i = j k y l = m q 0 1 = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
12 11 1 2 3 4 5 6 7 8 9 10 constrcccllem φ X Constr