Metamath Proof Explorer


Theorem constrext2chn

Description: If a constructible number generates some subfield L of CC , then the degree of the extension of L over QQ is a power of two. Theorem 7.12 of Stewart p. 98. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses constrext2chn.q Q = fld 𝑠
constrext2chn.l L = fld 𝑠 S
constrext2chn.s S = fld fldGen A
constrext2chn.a φ A Constr
Assertion constrext2chn φ n 0 L .:. Q = 2 n

Proof

Step Hyp Ref Expression
1 constrext2chn.q Q = fld 𝑠
2 constrext2chn.l L = fld 𝑠 S
3 constrext2chn.s S = fld fldGen A
4 constrext2chn.a φ A Constr
5 constrcbvlem rec z V y | i z j z k z l z o p y = i + o j i y = k + p l k j i l k 0 i z j z k z m z q z o y = i + o j i y k = m q i z j z k z l z m z q z i l y i = j k y l = m q 0 1 = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
6 eqid fld 𝑠 e = fld 𝑠 e
7 eqid fld 𝑠 f = fld 𝑠 f
8 oveq2 h = e fld 𝑠 h = fld 𝑠 e
9 8 adantl g = f h = e fld 𝑠 h = fld 𝑠 e
10 oveq2 g = f fld 𝑠 g = fld 𝑠 f
11 10 adantr g = f h = e fld 𝑠 g = fld 𝑠 f
12 9 11 breq12d g = f h = e fld 𝑠 h /FldExt fld 𝑠 g fld 𝑠 e /FldExt fld 𝑠 f
13 9 11 oveq12d g = f h = e fld 𝑠 h .:. fld 𝑠 g = fld 𝑠 e .:. fld 𝑠 f
14 13 eqeq1d g = f h = e fld 𝑠 h .:. fld 𝑠 g = 2 fld 𝑠 e .:. fld 𝑠 f = 2
15 12 14 anbi12d g = f h = e fld 𝑠 h /FldExt fld 𝑠 g fld 𝑠 h .:. fld 𝑠 g = 2 fld 𝑠 e /FldExt fld 𝑠 f fld 𝑠 e .:. fld 𝑠 f = 2
16 15 cbvopabv g h | fld 𝑠 h /FldExt fld 𝑠 g fld 𝑠 h .:. fld 𝑠 g = 2 = f e | fld 𝑠 e /FldExt fld 𝑠 f fld 𝑠 e .:. fld 𝑠 f = 2
17 peano1 ω
18 17 a1i φ ω
19 3 oveq2i fld 𝑠 S = fld 𝑠 fld fldGen A
20 2 19 eqtri L = fld 𝑠 fld fldGen A
21 5 6 7 16 18 1 20 4 constrext2chnlem φ n 0 L .:. Q = 2 n