Metamath Proof Explorer


Theorem constrcn

Description: Constructible numbers are complex numbers. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypothesis constrcn.1 φ X Constr
Assertion constrcn φ X

Proof

Step Hyp Ref Expression
1 constrcn.1 φ X Constr
2 constrcbvlem rec z V y | i z j z k z l z o p y = i + o j i y = k + p l k j i l k 0 i z j z k z m z q z o y = i + o j i y k = m q i z j z k z l z m z q z i l y i = j k y l = m q 0 1 = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
3 nnon u ω u On
4 3 adantl φ u ω u On
5 2 4 constrsscn φ u ω rec z V y | i z j z k z l z o p y = i + o j i y = k + p l k j i l k 0 i z j z k z m z q z o y = i + o j i y k = m q i z j z k z l z m z q z i l y i = j k y l = m q 0 1 u
6 5 sselda φ u ω X rec z V y | i z j z k z l z o p y = i + o j i y = k + p l k j i l k 0 i z j z k z m z q z o y = i + o j i y k = m q i z j z k z l z m z q z i l y i = j k y l = m q 0 1 u X
7 2 isconstr X Constr u ω X rec z V y | i z j z k z l z o p y = i + o j i y = k + p l k j i l k 0 i z j z k z m z q z o y = i + o j i y k = m q i z j z k z l z m z q z i l y i = j k y l = m q 0 1 u
8 1 7 sylib φ u ω X rec z V y | i z j z k z l z o p y = i + o j i y = k + p l k j i l k 0 i z j z k z m z q z o y = i + o j i y k = m q i z j z k z l z m z q z i l y i = j k y l = m q 0 1 u
9 6 8 r19.29a φ X