Metamath Proof Explorer


Theorem constrcn

Description: Constructible numbers are complex numbers. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypothesis constrcn.1
|- ( ph -> X e. Constr )
Assertion constrcn
|- ( ph -> X e. CC )

Proof

Step Hyp Ref Expression
1 constrcn.1
 |-  ( ph -> X e. Constr )
2 constrcbvlem
 |-  rec ( ( z e. _V |-> { y e. CC | ( E. i e. z E. j e. z E. k e. z E. l e. z E. o e. RR E. p e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ y = ( k + ( p x. ( l - k ) ) ) /\ ( Im ` ( ( * ` ( j - i ) ) x. ( l - k ) ) ) =/= 0 ) \/ E. i e. z E. j e. z E. k e. z E. m e. z E. q e. z E. o e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ ( abs ` ( y - k ) ) = ( abs ` ( m - q ) ) ) \/ E. i e. z E. j e. z E. k e. z E. l e. z E. m e. z E. q e. z ( i =/= l /\ ( abs ` ( y - i ) ) = ( abs ` ( j - k ) ) /\ ( abs ` ( y - l ) ) = ( abs ` ( m - q ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } )
3 nnon
 |-  ( u e. _om -> u e. On )
4 3 adantl
 |-  ( ( ph /\ u e. _om ) -> u e. On )
5 2 4 constrsscn
 |-  ( ( ph /\ u e. _om ) -> ( rec ( ( z e. _V |-> { y e. CC | ( E. i e. z E. j e. z E. k e. z E. l e. z E. o e. RR E. p e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ y = ( k + ( p x. ( l - k ) ) ) /\ ( Im ` ( ( * ` ( j - i ) ) x. ( l - k ) ) ) =/= 0 ) \/ E. i e. z E. j e. z E. k e. z E. m e. z E. q e. z E. o e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ ( abs ` ( y - k ) ) = ( abs ` ( m - q ) ) ) \/ E. i e. z E. j e. z E. k e. z E. l e. z E. m e. z E. q e. z ( i =/= l /\ ( abs ` ( y - i ) ) = ( abs ` ( j - k ) ) /\ ( abs ` ( y - l ) ) = ( abs ` ( m - q ) ) ) ) } ) , { 0 , 1 } ) ` u ) C_ CC )
6 5 sselda
 |-  ( ( ( ph /\ u e. _om ) /\ X e. ( rec ( ( z e. _V |-> { y e. CC | ( E. i e. z E. j e. z E. k e. z E. l e. z E. o e. RR E. p e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ y = ( k + ( p x. ( l - k ) ) ) /\ ( Im ` ( ( * ` ( j - i ) ) x. ( l - k ) ) ) =/= 0 ) \/ E. i e. z E. j e. z E. k e. z E. m e. z E. q e. z E. o e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ ( abs ` ( y - k ) ) = ( abs ` ( m - q ) ) ) \/ E. i e. z E. j e. z E. k e. z E. l e. z E. m e. z E. q e. z ( i =/= l /\ ( abs ` ( y - i ) ) = ( abs ` ( j - k ) ) /\ ( abs ` ( y - l ) ) = ( abs ` ( m - q ) ) ) ) } ) , { 0 , 1 } ) ` u ) ) -> X e. CC )
7 2 isconstr
 |-  ( X e. Constr <-> E. u e. _om X e. ( rec ( ( z e. _V |-> { y e. CC | ( E. i e. z E. j e. z E. k e. z E. l e. z E. o e. RR E. p e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ y = ( k + ( p x. ( l - k ) ) ) /\ ( Im ` ( ( * ` ( j - i ) ) x. ( l - k ) ) ) =/= 0 ) \/ E. i e. z E. j e. z E. k e. z E. m e. z E. q e. z E. o e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ ( abs ` ( y - k ) ) = ( abs ` ( m - q ) ) ) \/ E. i e. z E. j e. z E. k e. z E. l e. z E. m e. z E. q e. z ( i =/= l /\ ( abs ` ( y - i ) ) = ( abs ` ( j - k ) ) /\ ( abs ` ( y - l ) ) = ( abs ` ( m - q ) ) ) ) } ) , { 0 , 1 } ) ` u ) )
8 1 7 sylib
 |-  ( ph -> E. u e. _om X e. ( rec ( ( z e. _V |-> { y e. CC | ( E. i e. z E. j e. z E. k e. z E. l e. z E. o e. RR E. p e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ y = ( k + ( p x. ( l - k ) ) ) /\ ( Im ` ( ( * ` ( j - i ) ) x. ( l - k ) ) ) =/= 0 ) \/ E. i e. z E. j e. z E. k e. z E. m e. z E. q e. z E. o e. RR ( y = ( i + ( o x. ( j - i ) ) ) /\ ( abs ` ( y - k ) ) = ( abs ` ( m - q ) ) ) \/ E. i e. z E. j e. z E. k e. z E. l e. z E. m e. z E. q e. z ( i =/= l /\ ( abs ` ( y - i ) ) = ( abs ` ( j - k ) ) /\ ( abs ` ( y - l ) ) = ( abs ` ( m - q ) ) ) ) } ) , { 0 , 1 } ) ` u ) )
9 6 8 r19.29a
 |-  ( ph -> X e. CC )