Metamath Proof Explorer


Theorem constrext2chn

Description: If a constructible number generates some subfield L of CC , then the degree of the extension of L over QQ is a power of two. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses constrext2chn.q 𝑄 = ( ℂflds ℚ )
constrext2chn.l 𝐿 = ( ℂflds 𝑆 )
constrext2chn.s 𝑆 = ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) )
constrext2chn.a ( 𝜑𝐴 ∈ Constr )
Assertion constrext2chn ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) )

Proof

Step Hyp Ref Expression
1 constrext2chn.q 𝑄 = ( ℂflds ℚ )
2 constrext2chn.l 𝐿 = ( ℂflds 𝑆 )
3 constrext2chn.s 𝑆 = ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) )
4 constrext2chn.a ( 𝜑𝐴 ∈ Constr )
5 oveq1 ( 𝑜 = 𝑡 → ( 𝑜 · ( 𝑗𝑖 ) ) = ( 𝑡 · ( 𝑗𝑖 ) ) )
6 5 oveq2d ( 𝑜 = 𝑡 → ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) )
7 6 eqeq2d ( 𝑜 = 𝑡 → ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ↔ 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ) )
8 7 3anbi1d ( 𝑜 = 𝑡 → ( ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ) )
9 oveq1 ( 𝑝 = 𝑟 → ( 𝑝 · ( 𝑙𝑘 ) ) = ( 𝑟 · ( 𝑙𝑘 ) ) )
10 9 oveq2d ( 𝑝 = 𝑟 → ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) )
11 10 eqeq2d ( 𝑝 = 𝑟 → ( 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ↔ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ) )
12 11 3anbi2d ( 𝑝 = 𝑟 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ) )
13 8 12 cbvrex2vw ( ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) )
14 13 2rexbii ( ∃ 𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑘𝑧𝑙𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) )
15 id ( 𝑘 = 𝑐𝑘 = 𝑐 )
16 oveq2 ( 𝑘 = 𝑐 → ( 𝑙𝑘 ) = ( 𝑙𝑐 ) )
17 16 oveq2d ( 𝑘 = 𝑐 → ( 𝑟 · ( 𝑙𝑘 ) ) = ( 𝑟 · ( 𝑙𝑐 ) ) )
18 15 17 oveq12d ( 𝑘 = 𝑐 → ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) )
19 18 eqeq2d ( 𝑘 = 𝑐 → ( 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ↔ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ) )
20 16 oveq2d ( 𝑘 = 𝑐 → ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) = ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) )
21 20 fveq2d ( 𝑘 = 𝑐 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) )
22 21 neeq1d ( 𝑘 = 𝑐 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ) )
23 19 22 3anbi23d ( 𝑘 = 𝑐 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ) ) )
24 23 2rexbidv ( 𝑘 = 𝑐 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ) ) )
25 oveq1 ( 𝑙 = 𝑑 → ( 𝑙𝑐 ) = ( 𝑑𝑐 ) )
26 25 oveq2d ( 𝑙 = 𝑑 → ( 𝑟 · ( 𝑙𝑐 ) ) = ( 𝑟 · ( 𝑑𝑐 ) ) )
27 26 oveq2d ( 𝑙 = 𝑑 → ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) )
28 27 eqeq2d ( 𝑙 = 𝑑 → ( 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ↔ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ) )
29 25 oveq2d ( 𝑙 = 𝑑 → ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) = ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) )
30 29 fveq2d ( 𝑙 = 𝑑 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) )
31 30 neeq1d ( 𝑙 = 𝑑 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
32 28 31 3anbi23d ( 𝑙 = 𝑑 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
33 32 2rexbidv ( 𝑙 = 𝑑 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
34 24 33 cbvrex2vw ( ∃ 𝑘𝑧𝑙𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
35 14 34 bitri ( ∃ 𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
36 35 2rexbii ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
37 oveq2 ( 𝑞 = 𝑓 → ( 𝑚𝑞 ) = ( 𝑚𝑓 ) )
38 37 fveq2d ( 𝑞 = 𝑓 → ( abs ‘ ( 𝑚𝑞 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) )
39 38 eqeq2d ( 𝑞 = 𝑓 → ( ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ↔ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) )
40 39 anbi2d ( 𝑞 = 𝑓 → ( ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ) )
41 7 anbi1d ( 𝑜 = 𝑡 → ( ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ) )
42 40 41 cbvrex2vw ( ∃ 𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) )
43 42 2rexbii ( ∃ 𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑘𝑧𝑚𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) )
44 oveq2 ( 𝑘 = 𝑐 → ( 𝑦𝑘 ) = ( 𝑦𝑐 ) )
45 44 fveq2d ( 𝑘 = 𝑐 → ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑦𝑐 ) ) )
46 45 eqeq1d ( 𝑘 = 𝑐 → ( ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ↔ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) )
47 46 anbi2d ( 𝑘 = 𝑐 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ) )
48 47 2rexbidv ( 𝑘 = 𝑐 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ) )
49 oveq1 ( 𝑚 = 𝑒 → ( 𝑚𝑓 ) = ( 𝑒𝑓 ) )
50 49 fveq2d ( 𝑚 = 𝑒 → ( abs ‘ ( 𝑚𝑓 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) )
51 50 eqeq2d ( 𝑚 = 𝑒 → ( ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ↔ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
52 51 anbi2d ( 𝑚 = 𝑒 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
53 52 2rexbidv ( 𝑚 = 𝑒 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
54 48 53 cbvrex2vw ( ∃ 𝑘𝑧𝑚𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
55 43 54 bitri ( ∃ 𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
56 55 2rexbii ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
57 oveq1 ( 𝑚 = 𝑒 → ( 𝑚𝑞 ) = ( 𝑒𝑞 ) )
58 57 fveq2d ( 𝑚 = 𝑒 → ( abs ‘ ( 𝑚𝑞 ) ) = ( abs ‘ ( 𝑒𝑞 ) ) )
59 58 eqeq2d ( 𝑚 = 𝑒 → ( ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ↔ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑞 ) ) ) )
60 59 3anbi3d ( 𝑚 = 𝑒 → ( ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑞 ) ) ) ) )
61 oveq2 ( 𝑞 = 𝑓 → ( 𝑒𝑞 ) = ( 𝑒𝑓 ) )
62 61 fveq2d ( 𝑞 = 𝑓 → ( abs ‘ ( 𝑒𝑞 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) )
63 62 eqeq2d ( 𝑞 = 𝑓 → ( ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑞 ) ) ↔ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
64 63 3anbi3d ( 𝑞 = 𝑓 → ( ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑞 ) ) ) ↔ ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
65 60 64 cbvrex2vw ( ∃ 𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
66 65 2rexbii ( ∃ 𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑘𝑧𝑙𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
67 oveq2 ( 𝑘 = 𝑐 → ( 𝑗𝑘 ) = ( 𝑗𝑐 ) )
68 67 fveq2d ( 𝑘 = 𝑐 → ( abs ‘ ( 𝑗𝑘 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) )
69 68 eqeq2d ( 𝑘 = 𝑐 → ( ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ↔ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ) )
70 69 3anbi2d ( 𝑘 = 𝑐 → ( ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
71 70 2rexbidv ( 𝑘 = 𝑐 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
72 neeq2 ( 𝑙 = 𝑑 → ( 𝑖𝑙𝑖𝑑 ) )
73 oveq2 ( 𝑙 = 𝑑 → ( 𝑦𝑙 ) = ( 𝑦𝑑 ) )
74 73 fveq2d ( 𝑙 = 𝑑 → ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑦𝑑 ) ) )
75 74 eqeq1d ( 𝑙 = 𝑑 → ( ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
76 72 75 3anbi13d ( 𝑙 = 𝑑 → ( ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
77 76 2rexbidv ( 𝑙 = 𝑑 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
78 71 77 cbvrex2vw ( ∃ 𝑘𝑧𝑙𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
79 66 78 bitri ( ∃ 𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
80 79 2rexbii ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
81 36 56 80 3orbi123i ( ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) ↔ ( ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
82 id ( 𝑖 = 𝑎𝑖 = 𝑎 )
83 oveq2 ( 𝑖 = 𝑎 → ( 𝑗𝑖 ) = ( 𝑗𝑎 ) )
84 83 oveq2d ( 𝑖 = 𝑎 → ( 𝑡 · ( 𝑗𝑖 ) ) = ( 𝑡 · ( 𝑗𝑎 ) ) )
85 82 84 oveq12d ( 𝑖 = 𝑎 → ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) )
86 85 eqeq2d ( 𝑖 = 𝑎 → ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ↔ 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ) )
87 83 fveq2d ( 𝑖 = 𝑎 → ( ∗ ‘ ( 𝑗𝑖 ) ) = ( ∗ ‘ ( 𝑗𝑎 ) ) )
88 87 oveq1d ( 𝑖 = 𝑎 → ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) = ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) )
89 88 fveq2d ( 𝑖 = 𝑎 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) )
90 89 neeq1d ( 𝑖 = 𝑎 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
91 86 90 3anbi13d ( 𝑖 = 𝑎 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
92 91 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
93 92 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
94 oveq1 ( 𝑗 = 𝑏 → ( 𝑗𝑎 ) = ( 𝑏𝑎 ) )
95 94 oveq2d ( 𝑗 = 𝑏 → ( 𝑡 · ( 𝑗𝑎 ) ) = ( 𝑡 · ( 𝑏𝑎 ) ) )
96 95 oveq2d ( 𝑗 = 𝑏 → ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) )
97 96 eqeq2d ( 𝑗 = 𝑏 → ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ↔ 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ) )
98 94 fveq2d ( 𝑗 = 𝑏 → ( ∗ ‘ ( 𝑗𝑎 ) ) = ( ∗ ‘ ( 𝑏𝑎 ) ) )
99 98 oveq1d ( 𝑗 = 𝑏 → ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) = ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) )
100 99 fveq2d ( 𝑗 = 𝑏 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) )
101 100 neeq1d ( 𝑗 = 𝑏 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
102 97 101 3anbi13d ( 𝑗 = 𝑏 → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
103 102 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
104 103 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
105 93 104 cbvrex2vw ( ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
106 86 anbi1d ( 𝑖 = 𝑎 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
107 106 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
108 107 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
109 97 anbi1d ( 𝑗 = 𝑏 → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
110 109 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
111 110 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
112 108 111 cbvrex2vw ( ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
113 neeq1 ( 𝑖 = 𝑎 → ( 𝑖𝑑𝑎𝑑 ) )
114 oveq2 ( 𝑖 = 𝑎 → ( 𝑦𝑖 ) = ( 𝑦𝑎 ) )
115 114 fveq2d ( 𝑖 = 𝑎 → ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑦𝑎 ) ) )
116 115 eqeq1d ( 𝑖 = 𝑎 → ( ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ↔ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ) )
117 113 116 3anbi12d ( 𝑖 = 𝑎 → ( ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
118 117 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
119 118 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
120 oveq1 ( 𝑗 = 𝑏 → ( 𝑗𝑐 ) = ( 𝑏𝑐 ) )
121 120 fveq2d ( 𝑗 = 𝑏 → ( abs ‘ ( 𝑗𝑐 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) )
122 121 eqeq2d ( 𝑗 = 𝑏 → ( ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ↔ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) )
123 122 3anbi2d ( 𝑗 = 𝑏 → ( ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
124 123 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
125 124 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
126 119 125 cbvrex2vw ( ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
127 105 112 126 3orbi123i ( ( ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
128 81 127 bitri ( ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) ↔ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
129 128 rabbii { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } = { 𝑦 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) }
130 eqeq1 ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ↔ 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ) )
131 eqeq1 ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ↔ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ) )
132 biidd ( 𝑦 = 𝑥 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
133 130 131 132 3anbi123d ( 𝑦 = 𝑥 → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
134 133 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
135 134 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
136 135 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
137 oveq1 ( 𝑦 = 𝑥 → ( 𝑦𝑐 ) = ( 𝑥𝑐 ) )
138 137 fveq2d ( 𝑦 = 𝑥 → ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑥𝑐 ) ) )
139 138 eqeq1d ( 𝑦 = 𝑥 → ( ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
140 130 139 anbi12d ( 𝑦 = 𝑥 → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
141 140 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
142 141 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
143 142 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
144 biidd ( 𝑦 = 𝑥 → ( 𝑎𝑑𝑎𝑑 ) )
145 oveq1 ( 𝑦 = 𝑥 → ( 𝑦𝑎 ) = ( 𝑥𝑎 ) )
146 145 fveq2d ( 𝑦 = 𝑥 → ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑥𝑎 ) ) )
147 146 eqeq1d ( 𝑦 = 𝑥 → ( ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ↔ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) )
148 oveq1 ( 𝑦 = 𝑥 → ( 𝑦𝑑 ) = ( 𝑥𝑑 ) )
149 148 fveq2d ( 𝑦 = 𝑥 → ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑥𝑑 ) ) )
150 149 eqeq1d ( 𝑦 = 𝑥 → ( ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
151 144 147 150 3anbi123d ( 𝑦 = 𝑥 → ( ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
152 151 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
153 152 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
154 153 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
155 136 143 154 3orbi123d ( 𝑦 = 𝑥 → ( ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
156 155 cbvrabv { 𝑦 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } = { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) }
157 129 156 eqtri { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } = { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) }
158 157 mpteq2i ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) = ( 𝑧 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } )
159 elequ2 ( 𝑧 = 𝑠 → ( 𝑎𝑧𝑎𝑠 ) )
160 elequ2 ( 𝑧 = 𝑠 → ( 𝑏𝑧𝑏𝑠 ) )
161 elequ2 ( 𝑧 = 𝑠 → ( 𝑐𝑧𝑐𝑠 ) )
162 rexeq ( 𝑧 = 𝑠 → ( ∃ 𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
163 161 162 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑐𝑧 ∧ ∃ 𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ↔ ( 𝑐𝑠 ∧ ∃ 𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ) )
164 163 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
165 160 164 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑏𝑧 ∧ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ↔ ( 𝑏𝑠 ∧ ∃ 𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ) )
166 165 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
167 159 166 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑎𝑧 ∧ ∃ 𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ↔ ( 𝑎𝑠 ∧ ∃ 𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ) )
168 167 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
169 elequ2 ( 𝑧 = 𝑠 → ( 𝑒𝑧𝑒𝑠 ) )
170 rexeq ( 𝑧 = 𝑠 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
171 169 170 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑒𝑧 ∧ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑒𝑠 ∧ ∃ 𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
172 171 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
173 161 172 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑐𝑧 ∧ ∃ 𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑐𝑠 ∧ ∃ 𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
174 173 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
175 160 174 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑏𝑧 ∧ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑏𝑠 ∧ ∃ 𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
176 175 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
177 159 176 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑎𝑧 ∧ ∃ 𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑎𝑠 ∧ ∃ 𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
178 177 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
179 elequ2 ( 𝑧 = 𝑠 → ( 𝑑𝑧𝑑𝑠 ) )
180 rexeq ( 𝑧 = 𝑠 → ( ∃ 𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
181 169 180 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑒𝑧 ∧ ∃ 𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑒𝑠 ∧ ∃ 𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
182 181 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
183 179 182 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑑𝑧 ∧ ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑑𝑠 ∧ ∃ 𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
184 183 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
185 161 184 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑐𝑧 ∧ ∃ 𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑐𝑠 ∧ ∃ 𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
186 185 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
187 160 186 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑏𝑧 ∧ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑏𝑠 ∧ ∃ 𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
188 187 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
189 159 188 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑎𝑧 ∧ ∃ 𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑎𝑠 ∧ ∃ 𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
190 189 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
191 168 178 190 3orbi123d ( 𝑧 = 𝑠 → ( ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
192 191 rabbidv ( 𝑧 = 𝑠 → { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } = { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } )
193 192 cbvmptv ( 𝑧 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) = ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } )
194 158 193 eqtri ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) = ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } )
195 rdgeq1 ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) = ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) → rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } ) )
196 194 195 ax-mp rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
197 eqid ( ℂflds 𝑒 ) = ( ℂflds 𝑒 )
198 eqid ( ℂflds 𝑓 ) = ( ℂflds 𝑓 )
199 oveq2 ( = 𝑒 → ( ℂflds ) = ( ℂflds 𝑒 ) )
200 199 adantl ( ( 𝑔 = 𝑓 = 𝑒 ) → ( ℂflds ) = ( ℂflds 𝑒 ) )
201 oveq2 ( 𝑔 = 𝑓 → ( ℂflds 𝑔 ) = ( ℂflds 𝑓 ) )
202 201 adantr ( ( 𝑔 = 𝑓 = 𝑒 ) → ( ℂflds 𝑔 ) = ( ℂflds 𝑓 ) )
203 200 202 breq12d ( ( 𝑔 = 𝑓 = 𝑒 ) → ( ( ℂflds ) /FldExt ( ℂflds 𝑔 ) ↔ ( ℂflds 𝑒 ) /FldExt ( ℂflds 𝑓 ) ) )
204 200 202 oveq12d ( ( 𝑔 = 𝑓 = 𝑒 ) → ( ( ℂflds ) [:] ( ℂflds 𝑔 ) ) = ( ( ℂflds 𝑒 ) [:] ( ℂflds 𝑓 ) ) )
205 204 eqeq1d ( ( 𝑔 = 𝑓 = 𝑒 ) → ( ( ( ℂflds ) [:] ( ℂflds 𝑔 ) ) = 2 ↔ ( ( ℂflds 𝑒 ) [:] ( ℂflds 𝑓 ) ) = 2 ) )
206 203 205 anbi12d ( ( 𝑔 = 𝑓 = 𝑒 ) → ( ( ( ℂflds ) /FldExt ( ℂflds 𝑔 ) ∧ ( ( ℂflds ) [:] ( ℂflds 𝑔 ) ) = 2 ) ↔ ( ( ℂflds 𝑒 ) /FldExt ( ℂflds 𝑓 ) ∧ ( ( ℂflds 𝑒 ) [:] ( ℂflds 𝑓 ) ) = 2 ) ) )
207 206 cbvopabv { ⟨ 𝑔 , ⟩ ∣ ( ( ℂflds ) /FldExt ( ℂflds 𝑔 ) ∧ ( ( ℂflds ) [:] ( ℂflds 𝑔 ) ) = 2 ) } = { ⟨ 𝑓 , 𝑒 ⟩ ∣ ( ( ℂflds 𝑒 ) /FldExt ( ℂflds 𝑓 ) ∧ ( ( ℂflds 𝑒 ) [:] ( ℂflds 𝑓 ) ) = 2 ) }
208 peano1 ∅ ∈ ω
209 208 a1i ( 𝜑 → ∅ ∈ ω )
210 3 oveq2i ( ℂflds 𝑆 ) = ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) )
211 2 210 eqtri 𝐿 = ( ℂflds ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) )
212 196 197 198 207 209 1 211 4 constrext2chnlem ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) )