| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrext2chn.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 2 |
|
constrext2chn.l |
⊢ 𝐿 = ( ℂfld ↾s 𝑆 ) |
| 3 |
|
constrext2chn.s |
⊢ 𝑆 = ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) |
| 4 |
|
constrext2chn.a |
⊢ ( 𝜑 → 𝐴 ∈ Constr ) |
| 5 |
|
constrcbvlem |
⊢ rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙 − 𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗 − 𝑖 ) ) · ( 𝑙 − 𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ∃ 𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗 − 𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦 − 𝑘 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ∨ ∃ 𝑖 ∈ 𝑧 ∃ 𝑗 ∈ 𝑧 ∃ 𝑘 ∈ 𝑧 ∃ 𝑙 ∈ 𝑧 ∃ 𝑚 ∈ 𝑧 ∃ 𝑞 ∈ 𝑧 ( 𝑖 ≠ 𝑙 ∧ ( abs ‘ ( 𝑦 − 𝑖 ) ) = ( abs ‘ ( 𝑗 − 𝑘 ) ) ∧ ( abs ‘ ( 𝑦 − 𝑙 ) ) = ( abs ‘ ( 𝑚 − 𝑞 ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
| 6 |
|
eqid |
⊢ ( ℂfld ↾s 𝑒 ) = ( ℂfld ↾s 𝑒 ) |
| 7 |
|
eqid |
⊢ ( ℂfld ↾s 𝑓 ) = ( ℂfld ↾s 𝑓 ) |
| 8 |
|
oveq2 |
⊢ ( ℎ = 𝑒 → ( ℂfld ↾s ℎ ) = ( ℂfld ↾s 𝑒 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑔 = 𝑓 ∧ ℎ = 𝑒 ) → ( ℂfld ↾s ℎ ) = ( ℂfld ↾s 𝑒 ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑔 = 𝑓 → ( ℂfld ↾s 𝑔 ) = ( ℂfld ↾s 𝑓 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑔 = 𝑓 ∧ ℎ = 𝑒 ) → ( ℂfld ↾s 𝑔 ) = ( ℂfld ↾s 𝑓 ) ) |
| 12 |
9 11
|
breq12d |
⊢ ( ( 𝑔 = 𝑓 ∧ ℎ = 𝑒 ) → ( ( ℂfld ↾s ℎ ) /FldExt ( ℂfld ↾s 𝑔 ) ↔ ( ℂfld ↾s 𝑒 ) /FldExt ( ℂfld ↾s 𝑓 ) ) ) |
| 13 |
9 11
|
oveq12d |
⊢ ( ( 𝑔 = 𝑓 ∧ ℎ = 𝑒 ) → ( ( ℂfld ↾s ℎ ) [:] ( ℂfld ↾s 𝑔 ) ) = ( ( ℂfld ↾s 𝑒 ) [:] ( ℂfld ↾s 𝑓 ) ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( ( 𝑔 = 𝑓 ∧ ℎ = 𝑒 ) → ( ( ( ℂfld ↾s ℎ ) [:] ( ℂfld ↾s 𝑔 ) ) = 2 ↔ ( ( ℂfld ↾s 𝑒 ) [:] ( ℂfld ↾s 𝑓 ) ) = 2 ) ) |
| 15 |
12 14
|
anbi12d |
⊢ ( ( 𝑔 = 𝑓 ∧ ℎ = 𝑒 ) → ( ( ( ℂfld ↾s ℎ ) /FldExt ( ℂfld ↾s 𝑔 ) ∧ ( ( ℂfld ↾s ℎ ) [:] ( ℂfld ↾s 𝑔 ) ) = 2 ) ↔ ( ( ℂfld ↾s 𝑒 ) /FldExt ( ℂfld ↾s 𝑓 ) ∧ ( ( ℂfld ↾s 𝑒 ) [:] ( ℂfld ↾s 𝑓 ) ) = 2 ) ) ) |
| 16 |
15
|
cbvopabv |
⊢ { 〈 𝑔 , ℎ 〉 ∣ ( ( ℂfld ↾s ℎ ) /FldExt ( ℂfld ↾s 𝑔 ) ∧ ( ( ℂfld ↾s ℎ ) [:] ( ℂfld ↾s 𝑔 ) ) = 2 ) } = { 〈 𝑓 , 𝑒 〉 ∣ ( ( ℂfld ↾s 𝑒 ) /FldExt ( ℂfld ↾s 𝑓 ) ∧ ( ( ℂfld ↾s 𝑒 ) [:] ( ℂfld ↾s 𝑓 ) ) = 2 ) } |
| 17 |
|
peano1 |
⊢ ∅ ∈ ω |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → ∅ ∈ ω ) |
| 19 |
3
|
oveq2i |
⊢ ( ℂfld ↾s 𝑆 ) = ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) |
| 20 |
2 19
|
eqtri |
⊢ 𝐿 = ( ℂfld ↾s ( ℂfld fldGen ( ℚ ∪ { 𝐴 } ) ) ) |
| 21 |
5 6 7 16 18 1 20 4
|
constrext2chnlem |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( 𝐿 [:] 𝑄 ) = ( 2 ↑ 𝑛 ) ) |