Metamath Proof Explorer


Theorem constrcbvlem

Description: Technical lemma for eliminating the hypothesis of constr0 and co. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Assertion constrcbvlem rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑜 = 𝑡 → ( 𝑜 · ( 𝑗𝑖 ) ) = ( 𝑡 · ( 𝑗𝑖 ) ) )
2 1 oveq2d ( 𝑜 = 𝑡 → ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) )
3 2 eqeq2d ( 𝑜 = 𝑡 → ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ↔ 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ) )
4 3 3anbi1d ( 𝑜 = 𝑡 → ( ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ) )
5 oveq1 ( 𝑝 = 𝑟 → ( 𝑝 · ( 𝑙𝑘 ) ) = ( 𝑟 · ( 𝑙𝑘 ) ) )
6 5 oveq2d ( 𝑝 = 𝑟 → ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) )
7 6 eqeq2d ( 𝑝 = 𝑟 → ( 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ↔ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ) )
8 7 3anbi2d ( 𝑝 = 𝑟 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ) )
9 4 8 cbvrex2vw ( ∃ 𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) )
10 9 2rexbii ( ∃ 𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑘𝑧𝑙𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) )
11 id ( 𝑘 = 𝑐𝑘 = 𝑐 )
12 oveq2 ( 𝑘 = 𝑐 → ( 𝑙𝑘 ) = ( 𝑙𝑐 ) )
13 12 oveq2d ( 𝑘 = 𝑐 → ( 𝑟 · ( 𝑙𝑘 ) ) = ( 𝑟 · ( 𝑙𝑐 ) ) )
14 11 13 oveq12d ( 𝑘 = 𝑐 → ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) )
15 14 eqeq2d ( 𝑘 = 𝑐 → ( 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ↔ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ) )
16 12 oveq2d ( 𝑘 = 𝑐 → ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) = ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) )
17 16 fveq2d ( 𝑘 = 𝑐 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) )
18 17 neeq1d ( 𝑘 = 𝑐 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ) )
19 15 18 3anbi23d ( 𝑘 = 𝑐 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ) ) )
20 19 2rexbidv ( 𝑘 = 𝑐 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ) ) )
21 oveq1 ( 𝑙 = 𝑑 → ( 𝑙𝑐 ) = ( 𝑑𝑐 ) )
22 21 oveq2d ( 𝑙 = 𝑑 → ( 𝑟 · ( 𝑙𝑐 ) ) = ( 𝑟 · ( 𝑑𝑐 ) ) )
23 22 oveq2d ( 𝑙 = 𝑑 → ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) )
24 23 eqeq2d ( 𝑙 = 𝑑 → ( 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ↔ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ) )
25 21 oveq2d ( 𝑙 = 𝑑 → ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) = ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) )
26 25 fveq2d ( 𝑙 = 𝑑 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) )
27 26 neeq1d ( 𝑙 = 𝑑 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
28 24 27 3anbi23d ( 𝑙 = 𝑑 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
29 28 2rexbidv ( 𝑙 = 𝑑 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑙𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
30 20 29 cbvrex2vw ( ∃ 𝑘𝑧𝑙𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑟 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
31 10 30 bitri ( ∃ 𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
32 31 2rexbii ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ↔ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
33 oveq2 ( 𝑞 = 𝑓 → ( 𝑚𝑞 ) = ( 𝑚𝑓 ) )
34 33 fveq2d ( 𝑞 = 𝑓 → ( abs ‘ ( 𝑚𝑞 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) )
35 34 eqeq2d ( 𝑞 = 𝑓 → ( ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ↔ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) )
36 35 anbi2d ( 𝑞 = 𝑓 → ( ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ) )
37 3 anbi1d ( 𝑜 = 𝑡 → ( ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ) )
38 36 37 cbvrex2vw ( ∃ 𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) )
39 38 2rexbii ( ∃ 𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑘𝑧𝑚𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) )
40 oveq2 ( 𝑘 = 𝑐 → ( 𝑦𝑘 ) = ( 𝑦𝑐 ) )
41 40 fveq2d ( 𝑘 = 𝑐 → ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑦𝑐 ) ) )
42 41 eqeq1d ( 𝑘 = 𝑐 → ( ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ↔ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) )
43 42 anbi2d ( 𝑘 = 𝑐 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ) )
44 43 2rexbidv ( 𝑘 = 𝑐 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ) )
45 oveq1 ( 𝑚 = 𝑒 → ( 𝑚𝑓 ) = ( 𝑒𝑓 ) )
46 45 fveq2d ( 𝑚 = 𝑒 → ( abs ‘ ( 𝑚𝑓 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) )
47 46 eqeq2d ( 𝑚 = 𝑒 → ( ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ↔ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
48 47 anbi2d ( 𝑚 = 𝑒 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
49 48 2rexbidv ( 𝑚 = 𝑒 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
50 44 49 cbvrex2vw ( ∃ 𝑘𝑧𝑚𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
51 39 50 bitri ( ∃ 𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
52 51 2rexbii ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
53 oveq1 ( 𝑚 = 𝑒 → ( 𝑚𝑞 ) = ( 𝑒𝑞 ) )
54 53 fveq2d ( 𝑚 = 𝑒 → ( abs ‘ ( 𝑚𝑞 ) ) = ( abs ‘ ( 𝑒𝑞 ) ) )
55 54 eqeq2d ( 𝑚 = 𝑒 → ( ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ↔ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑞 ) ) ) )
56 55 3anbi3d ( 𝑚 = 𝑒 → ( ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑞 ) ) ) ) )
57 oveq2 ( 𝑞 = 𝑓 → ( 𝑒𝑞 ) = ( 𝑒𝑓 ) )
58 57 fveq2d ( 𝑞 = 𝑓 → ( abs ‘ ( 𝑒𝑞 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) )
59 58 eqeq2d ( 𝑞 = 𝑓 → ( ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑞 ) ) ↔ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
60 59 3anbi3d ( 𝑞 = 𝑓 → ( ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑞 ) ) ) ↔ ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
61 56 60 cbvrex2vw ( ∃ 𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
62 61 2rexbii ( ∃ 𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑘𝑧𝑙𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
63 oveq2 ( 𝑘 = 𝑐 → ( 𝑗𝑘 ) = ( 𝑗𝑐 ) )
64 63 fveq2d ( 𝑘 = 𝑐 → ( abs ‘ ( 𝑗𝑘 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) )
65 64 eqeq2d ( 𝑘 = 𝑐 → ( ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ↔ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ) )
66 65 3anbi2d ( 𝑘 = 𝑐 → ( ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
67 66 2rexbidv ( 𝑘 = 𝑐 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
68 neeq2 ( 𝑙 = 𝑑 → ( 𝑖𝑙𝑖𝑑 ) )
69 oveq2 ( 𝑙 = 𝑑 → ( 𝑦𝑙 ) = ( 𝑦𝑑 ) )
70 69 fveq2d ( 𝑙 = 𝑑 → ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑦𝑑 ) ) )
71 70 eqeq1d ( 𝑙 = 𝑑 → ( ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
72 68 71 3anbi13d ( 𝑙 = 𝑑 → ( ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
73 72 2rexbidv ( 𝑙 = 𝑑 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
74 67 73 cbvrex2vw ( ∃ 𝑘𝑧𝑙𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
75 62 74 bitri ( ∃ 𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
76 75 2rexbii ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ↔ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
77 32 52 76 3orbi123i ( ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) ↔ ( ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
78 id ( 𝑖 = 𝑎𝑖 = 𝑎 )
79 oveq2 ( 𝑖 = 𝑎 → ( 𝑗𝑖 ) = ( 𝑗𝑎 ) )
80 79 oveq2d ( 𝑖 = 𝑎 → ( 𝑡 · ( 𝑗𝑖 ) ) = ( 𝑡 · ( 𝑗𝑎 ) ) )
81 78 80 oveq12d ( 𝑖 = 𝑎 → ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) )
82 81 eqeq2d ( 𝑖 = 𝑎 → ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ↔ 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ) )
83 79 fveq2d ( 𝑖 = 𝑎 → ( ∗ ‘ ( 𝑗𝑖 ) ) = ( ∗ ‘ ( 𝑗𝑎 ) ) )
84 83 oveq1d ( 𝑖 = 𝑎 → ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) = ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) )
85 84 fveq2d ( 𝑖 = 𝑎 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) )
86 85 neeq1d ( 𝑖 = 𝑎 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
87 82 86 3anbi13d ( 𝑖 = 𝑎 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
88 87 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
89 88 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
90 oveq1 ( 𝑗 = 𝑏 → ( 𝑗𝑎 ) = ( 𝑏𝑎 ) )
91 90 oveq2d ( 𝑗 = 𝑏 → ( 𝑡 · ( 𝑗𝑎 ) ) = ( 𝑡 · ( 𝑏𝑎 ) ) )
92 91 oveq2d ( 𝑗 = 𝑏 → ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) )
93 92 eqeq2d ( 𝑗 = 𝑏 → ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ↔ 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ) )
94 90 fveq2d ( 𝑗 = 𝑏 → ( ∗ ‘ ( 𝑗𝑎 ) ) = ( ∗ ‘ ( 𝑏𝑎 ) ) )
95 94 oveq1d ( 𝑗 = 𝑏 → ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) = ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) )
96 95 fveq2d ( 𝑗 = 𝑏 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) )
97 96 neeq1d ( 𝑗 = 𝑏 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
98 93 97 3anbi13d ( 𝑗 = 𝑏 → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
99 98 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
100 99 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
101 89 100 cbvrex2vw ( ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
102 82 anbi1d ( 𝑖 = 𝑎 → ( ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
103 102 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
104 103 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
105 93 anbi1d ( 𝑗 = 𝑏 → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
106 105 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
107 106 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑗𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
108 104 107 cbvrex2vw ( ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
109 neeq1 ( 𝑖 = 𝑎 → ( 𝑖𝑑𝑎𝑑 ) )
110 oveq2 ( 𝑖 = 𝑎 → ( 𝑦𝑖 ) = ( 𝑦𝑎 ) )
111 110 fveq2d ( 𝑖 = 𝑎 → ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑦𝑎 ) ) )
112 111 eqeq1d ( 𝑖 = 𝑎 → ( ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ↔ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ) )
113 109 112 3anbi12d ( 𝑖 = 𝑎 → ( ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
114 113 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
115 114 2rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
116 oveq1 ( 𝑗 = 𝑏 → ( 𝑗𝑐 ) = ( 𝑏𝑐 ) )
117 116 fveq2d ( 𝑗 = 𝑏 → ( abs ‘ ( 𝑗𝑐 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) )
118 117 eqeq2d ( 𝑗 = 𝑏 → ( ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ↔ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) )
119 118 3anbi2d ( 𝑗 = 𝑏 → ( ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
120 119 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
121 120 2rexbidv ( 𝑗 = 𝑏 → ( ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
122 115 121 cbvrex2vw ( ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
123 101 108 122 3orbi123i ( ( ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑡 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑖𝑑 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
124 77 123 bitri ( ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) ↔ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
125 124 rabbii { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } = { 𝑦 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) }
126 eqeq1 ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ↔ 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ) )
127 eqeq1 ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ↔ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ) )
128 biidd ( 𝑦 = 𝑥 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
129 126 127 128 3anbi123d ( 𝑦 = 𝑥 → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
130 129 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
131 130 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
132 131 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
133 oveq1 ( 𝑦 = 𝑥 → ( 𝑦𝑐 ) = ( 𝑥𝑐 ) )
134 133 fveq2d ( 𝑦 = 𝑥 → ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑥𝑐 ) ) )
135 134 eqeq1d ( 𝑦 = 𝑥 → ( ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
136 126 135 anbi12d ( 𝑦 = 𝑥 → ( ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
137 136 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
138 137 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
139 138 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
140 biidd ( 𝑦 = 𝑥 → ( 𝑎𝑑𝑎𝑑 ) )
141 oveq1 ( 𝑦 = 𝑥 → ( 𝑦𝑎 ) = ( 𝑥𝑎 ) )
142 141 fveq2d ( 𝑦 = 𝑥 → ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑥𝑎 ) ) )
143 142 eqeq1d ( 𝑦 = 𝑥 → ( ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ↔ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ) )
144 oveq1 ( 𝑦 = 𝑥 → ( 𝑦𝑑 ) = ( 𝑥𝑑 ) )
145 144 fveq2d ( 𝑦 = 𝑥 → ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑥𝑑 ) ) )
146 145 eqeq1d ( 𝑦 = 𝑥 → ( ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
147 140 143 146 3anbi123d ( 𝑦 = 𝑥 → ( ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
148 147 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
149 148 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
150 149 2rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
151 132 139 150 3orbi123d ( 𝑦 = 𝑥 → ( ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
152 151 cbvrabv { 𝑦 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑦 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑦 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑦𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑦𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑦𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } = { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) }
153 125 152 eqtri { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } = { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) }
154 153 mpteq2i ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) = ( 𝑧 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } )
155 elequ2 ( 𝑧 = 𝑠 → ( 𝑎𝑧𝑎𝑠 ) )
156 elequ2 ( 𝑧 = 𝑠 → ( 𝑏𝑧𝑏𝑠 ) )
157 elequ2 ( 𝑧 = 𝑠 → ( 𝑐𝑧𝑐𝑠 ) )
158 rexeq ( 𝑧 = 𝑠 → ( ∃ 𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
159 157 158 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑐𝑧 ∧ ∃ 𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ↔ ( 𝑐𝑠 ∧ ∃ 𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ) )
160 159 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
161 156 160 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑏𝑧 ∧ ∃ 𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ↔ ( 𝑏𝑠 ∧ ∃ 𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ) )
162 161 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
163 155 162 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑎𝑧 ∧ ∃ 𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ↔ ( 𝑎𝑠 ∧ ∃ 𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) ) )
164 163 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
165 elequ2 ( 𝑧 = 𝑠 → ( 𝑒𝑧𝑒𝑠 ) )
166 rexeq ( 𝑧 = 𝑠 → ( ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
167 165 166 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑒𝑧 ∧ ∃ 𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑒𝑠 ∧ ∃ 𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
168 167 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
169 157 168 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑐𝑧 ∧ ∃ 𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑐𝑠 ∧ ∃ 𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
170 169 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
171 156 170 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑏𝑧 ∧ ∃ 𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑏𝑠 ∧ ∃ 𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
172 171 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
173 155 172 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑎𝑧 ∧ ∃ 𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑎𝑠 ∧ ∃ 𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
174 173 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
175 elequ2 ( 𝑧 = 𝑠 → ( 𝑑𝑧𝑑𝑠 ) )
176 rexeq ( 𝑧 = 𝑠 → ( ∃ 𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
177 165 176 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑒𝑧 ∧ ∃ 𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑒𝑠 ∧ ∃ 𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
178 177 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
179 175 178 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑑𝑧 ∧ ∃ 𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑑𝑠 ∧ ∃ 𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
180 179 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
181 157 180 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑐𝑧 ∧ ∃ 𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑐𝑠 ∧ ∃ 𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
182 181 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
183 156 182 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑏𝑧 ∧ ∃ 𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑏𝑠 ∧ ∃ 𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
184 183 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
185 155 184 anbi12d ( 𝑧 = 𝑠 → ( ( 𝑎𝑧 ∧ ∃ 𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( 𝑎𝑠 ∧ ∃ 𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
186 185 rexbidv2 ( 𝑧 = 𝑠 → ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
187 164 174 186 3orbi123d ( 𝑧 = 𝑠 → ( ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ↔ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) )
188 187 rabbidv ( 𝑧 = 𝑠 → { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } = { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } )
189 188 cbvmptv ( 𝑧 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) = ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } )
190 154 189 eqtri ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) = ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } )
191 rdgeq1 ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) = ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) → rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } ) )
192 190 191 ax-mp rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )