Metamath Proof Explorer


Theorem constrllcl

Description: Constructible numbers are closed under line-line intersections. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses constrllcl.a ( 𝜑𝐴 ∈ Constr )
constrllcl.b ( 𝜑𝐵 ∈ Constr )
constrllcl.c ( 𝜑𝐺 ∈ Constr )
constrllcl.e ( 𝜑𝐷 ∈ Constr )
constrllcl.t ( 𝜑𝑇 ∈ ℝ )
constrllcl.r ( 𝜑𝑅 ∈ ℝ )
constrllcl.x ( 𝜑𝑋 ∈ ℂ )
constrllcl.1 ( 𝜑𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) )
constrllcl.2 ( 𝜑𝑋 = ( 𝐺 + ( 𝑅 · ( 𝐷𝐺 ) ) ) )
constrllcl.3 ( 𝜑 → ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 )
Assertion constrllcl ( 𝜑𝑋 ∈ Constr )

Proof

Step Hyp Ref Expression
1 constrllcl.a ( 𝜑𝐴 ∈ Constr )
2 constrllcl.b ( 𝜑𝐵 ∈ Constr )
3 constrllcl.c ( 𝜑𝐺 ∈ Constr )
4 constrllcl.e ( 𝜑𝐷 ∈ Constr )
5 constrllcl.t ( 𝜑𝑇 ∈ ℝ )
6 constrllcl.r ( 𝜑𝑅 ∈ ℝ )
7 constrllcl.x ( 𝜑𝑋 ∈ ℂ )
8 constrllcl.1 ( 𝜑𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) )
9 constrllcl.2 ( 𝜑𝑋 = ( 𝐺 + ( 𝑅 · ( 𝐷𝐺 ) ) ) )
10 constrllcl.3 ( 𝜑 → ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 )
11 constrcbvlem rec ( ( 𝑧 ∈ V ↦ { 𝑦 ∈ ℂ ∣ ( ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃ 𝑝 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ 𝑦 = ( 𝑘 + ( 𝑝 · ( 𝑙𝑘 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑗𝑖 ) ) · ( 𝑙𝑘 ) ) ) ≠ 0 ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ ( 𝑦 = ( 𝑖 + ( 𝑜 · ( 𝑗𝑖 ) ) ) ∧ ( abs ‘ ( 𝑦𝑘 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ∨ ∃ 𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 ( 𝑖𝑙 ∧ ( abs ‘ ( 𝑦𝑖 ) ) = ( abs ‘ ( 𝑗𝑘 ) ) ∧ ( abs ‘ ( 𝑦𝑙 ) ) = ( abs ‘ ( 𝑚𝑞 ) ) ) ) } ) , { 0 , 1 } ) = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
12 11 1 2 3 4 5 6 7 8 9 10 constrllcllem ( 𝜑𝑋 ∈ Constr )