Metamath Proof Explorer


Theorem constrllcl

Description: Constructible numbers are closed under line-line intersections. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses constrllcl.a φ A Constr
constrllcl.b φ B Constr
constrllcl.c φ G Constr
constrllcl.e φ D Constr
constrllcl.t φ T
constrllcl.r φ R
constrllcl.x φ X
constrllcl.1 φ X = A + T B A
constrllcl.2 φ X = G + R D G
constrllcl.3 φ B A D G 0
Assertion constrllcl φ X Constr

Proof

Step Hyp Ref Expression
1 constrllcl.a φ A Constr
2 constrllcl.b φ B Constr
3 constrllcl.c φ G Constr
4 constrllcl.e φ D Constr
5 constrllcl.t φ T
6 constrllcl.r φ R
7 constrllcl.x φ X
8 constrllcl.1 φ X = A + T B A
9 constrllcl.2 φ X = G + R D G
10 constrllcl.3 φ B A D G 0
11 constrcbvlem rec z V y | i z j z k z l z o p y = i + o j i y = k + p l k j i l k 0 i z j z k z m z q z o y = i + o j i y k = m q i z j z k z l z m z q z i l y i = j k y l = m q 0 1 = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
12 11 1 2 3 4 5 6 7 8 9 10 constrllcllem φ X Constr