Metamath Proof Explorer


Theorem constrllcllem

Description: Constructible numbers are closed under line-line intersections. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
constrllcllem.a φ A Constr
constrllcllem.b φ B Constr
constrllcllem.c φ G Constr
constrllcllem.e φ D Constr
constrllcllem.t φ T
constrllcllem.r φ R
constrllcllem.x φ X
constrllcllem.1 φ X = A + T B A
constrllcllem.2 φ X = G + R D G
constrllcllem.3 φ B A D G 0
Assertion constrllcllem φ X Constr

Proof

Step Hyp Ref Expression
1 constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
2 constrllcllem.a φ A Constr
3 constrllcllem.b φ B Constr
4 constrllcllem.c φ G Constr
5 constrllcllem.e φ D Constr
6 constrllcllem.t φ T
7 constrllcllem.r φ R
8 constrllcllem.x φ X
9 constrllcllem.1 φ X = A + T B A
10 constrllcllem.2 φ X = G + R D G
11 constrllcllem.3 φ B A D G 0
12 peano2b n ω suc n ω
13 12 biimpi n ω suc n ω
14 13 ad2antlr φ n ω A B G D C n suc n ω
15 fveq2 m = suc n C m = C suc n
16 15 eleq2d m = suc n X C m X C suc n
17 16 adantl φ n ω A B G D C n m = suc n X C m X C suc n
18 8 ad2antrr φ n ω A B G D C n X
19 id a = A a = A
20 oveq2 a = A b a = b A
21 20 oveq2d a = A t b a = t b A
22 19 21 oveq12d a = A a + t b a = A + t b A
23 22 eqeq2d a = A X = a + t b a X = A + t b A
24 20 fveq2d a = A b a = b A
25 24 oveq1d a = A b a d c = b A d c
26 25 fveq2d a = A b a d c = b A d c
27 26 neeq1d a = A b a d c 0 b A d c 0
28 23 27 3anbi13d a = A X = a + t b a X = c + r d c b a d c 0 X = A + t b A X = c + r d c b A d c 0
29 28 rexbidv a = A r X = a + t b a X = c + r d c b a d c 0 r X = A + t b A X = c + r d c b A d c 0
30 29 2rexbidv a = A d C n t r X = a + t b a X = c + r d c b a d c 0 d C n t r X = A + t b A X = c + r d c b A d c 0
31 oveq1 b = B b A = B A
32 31 oveq2d b = B t b A = t B A
33 32 oveq2d b = B A + t b A = A + t B A
34 33 eqeq2d b = B X = A + t b A X = A + t B A
35 31 fveq2d b = B b A = B A
36 35 oveq1d b = B b A d c = B A d c
37 36 fveq2d b = B b A d c = B A d c
38 37 neeq1d b = B b A d c 0 B A d c 0
39 34 38 3anbi13d b = B X = A + t b A X = c + r d c b A d c 0 X = A + t B A X = c + r d c B A d c 0
40 39 rexbidv b = B r X = A + t b A X = c + r d c b A d c 0 r X = A + t B A X = c + r d c B A d c 0
41 40 2rexbidv b = B d C n t r X = A + t b A X = c + r d c b A d c 0 d C n t r X = A + t B A X = c + r d c B A d c 0
42 id c = G c = G
43 oveq2 c = G d c = d G
44 43 oveq2d c = G r d c = r d G
45 42 44 oveq12d c = G c + r d c = G + r d G
46 45 eqeq2d c = G X = c + r d c X = G + r d G
47 43 oveq2d c = G B A d c = B A d G
48 47 fveq2d c = G B A d c = B A d G
49 48 neeq1d c = G B A d c 0 B A d G 0
50 46 49 3anbi23d c = G X = A + t B A X = c + r d c B A d c 0 X = A + t B A X = G + r d G B A d G 0
51 50 rexbidv c = G r X = A + t B A X = c + r d c B A d c 0 r X = A + t B A X = G + r d G B A d G 0
52 51 2rexbidv c = G d C n t r X = A + t B A X = c + r d c B A d c 0 d C n t r X = A + t B A X = G + r d G B A d G 0
53 2 ad2antrr φ n ω A B G D C n A Constr
54 simpr φ n ω A B G D C n A B G D C n
55 54 unssad φ n ω A B G D C n A B C n
56 53 55 prssad φ n ω A B G D C n A C n
57 3 ad2antrr φ n ω A B G D C n B Constr
58 57 55 prssbd φ n ω A B G D C n B C n
59 4 ad2antrr φ n ω A B G D C n G Constr
60 54 unssbd φ n ω A B G D C n G D C n
61 59 60 prssad φ n ω A B G D C n G C n
62 oveq1 d = D d G = D G
63 62 oveq2d d = D r d G = r D G
64 63 oveq2d d = D G + r d G = G + r D G
65 64 eqeq2d d = D X = G + r d G X = G + r D G
66 62 oveq2d d = D B A d G = B A D G
67 66 fveq2d d = D B A d G = B A D G
68 67 neeq1d d = D B A d G 0 B A D G 0
69 65 68 3anbi23d d = D X = A + t B A X = G + r d G B A d G 0 X = A + t B A X = G + r D G B A D G 0
70 oveq1 t = T t B A = T B A
71 70 oveq2d t = T A + t B A = A + T B A
72 71 eqeq2d t = T X = A + t B A X = A + T B A
73 72 3anbi1d t = T X = A + t B A X = G + r D G B A D G 0 X = A + T B A X = G + r D G B A D G 0
74 oveq1 r = R r D G = R D G
75 74 oveq2d r = R G + r D G = G + R D G
76 75 eqeq2d r = R X = G + r D G X = G + R D G
77 76 3anbi2d r = R X = A + T B A X = G + r D G B A D G 0 X = A + T B A X = G + R D G B A D G 0
78 5 ad2antrr φ n ω A B G D C n D Constr
79 78 60 prssbd φ n ω A B G D C n D C n
80 6 ad2antrr φ n ω A B G D C n T
81 7 ad2antrr φ n ω A B G D C n R
82 9 ad2antrr φ n ω A B G D C n X = A + T B A
83 10 ad2antrr φ n ω A B G D C n X = G + R D G
84 11 ad2antrr φ n ω A B G D C n B A D G 0
85 82 83 84 3jca φ n ω A B G D C n X = A + T B A X = G + R D G B A D G 0
86 69 73 77 79 80 81 85 3rspcedvdw φ n ω A B G D C n d C n t r X = A + t B A X = G + r d G B A d G 0
87 30 41 52 56 58 61 86 3rspcedvdw φ n ω A B G D C n a C n b C n c C n d C n t r X = a + t b a X = c + r d c b a d c 0
88 87 3mix1d φ n ω A B G D C n a C n b C n c C n d C n t r X = a + t b a X = c + r d c b a d c 0 a C n b C n c C n e C n f C n t X = a + t b a X c = e f a C n b C n c C n d C n e C n f C n a d X a = b c X d = e f
89 nnon n ω n On
90 89 ad2antlr φ n ω A B G D C n n On
91 eqid C n = C n
92 1 90 91 constrsuc φ n ω A B G D C n X C suc n X a C n b C n c C n d C n t r X = a + t b a X = c + r d c b a d c 0 a C n b C n c C n e C n f C n t X = a + t b a X c = e f a C n b C n c C n d C n e C n f C n a d X a = b c X d = e f
93 18 88 92 mpbir2and φ n ω A B G D C n X C suc n
94 14 17 93 rspcedvd φ n ω A B G D C n m ω X C m
95 1 isconstr X Constr m ω X C m
96 94 95 sylibr φ n ω A B G D C n X Constr
97 2 3 prssd φ A B Constr
98 4 5 prssd φ G D Constr
99 97 98 unssd φ A B G D Constr
100 prfi A B Fin
101 100 a1i φ A B Fin
102 prfi G D Fin
103 102 a1i φ G D Fin
104 101 103 unfid φ A B G D Fin
105 1 99 104 constrfiss φ n ω A B G D C n
106 96 105 r19.29a φ X Constr