| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|
| 2 |
|
constrfiss.1 |
|
| 3 |
|
constrfiss.2 |
|
| 4 |
|
sseq1 |
|
| 5 |
4
|
rexbidv |
|
| 6 |
|
sseq1 |
|
| 7 |
6
|
rexbidv |
|
| 8 |
|
sseq1 |
|
| 9 |
8
|
rexbidv |
|
| 10 |
|
fveq2 |
|
| 11 |
10
|
sseq2d |
|
| 12 |
11
|
cbvrexvw |
|
| 13 |
9 12
|
bitrdi |
|
| 14 |
|
sseq1 |
|
| 15 |
14
|
rexbidv |
|
| 16 |
|
peano1 |
|
| 17 |
16
|
ne0ii |
|
| 18 |
|
0ss |
|
| 19 |
18
|
a1i |
|
| 20 |
19
|
reximdva0 |
|
| 21 |
17 20
|
mpan2 |
|
| 22 |
|
simpllr |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
sseq2d |
|
| 25 |
24
|
adantl |
|
| 26 |
|
simp-4r |
|
| 27 |
|
nnon |
|
| 28 |
27
|
adantr |
|
| 29 |
|
simpr |
|
| 30 |
1 28 29
|
constrmon |
|
| 31 |
22 30
|
sylancom |
|
| 32 |
26 31
|
sstrd |
|
| 33 |
|
simplr |
|
| 34 |
33
|
snssd |
|
| 35 |
32 34
|
unssd |
|
| 36 |
22 25 35
|
rspcedvd |
|
| 37 |
|
simp-5r |
|
| 38 |
|
fveq2 |
|
| 39 |
38
|
sseq2d |
|
| 40 |
39
|
adantl |
|
| 41 |
|
simp-4r |
|
| 42 |
|
nnon |
|
| 43 |
42
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
1 43 44
|
constrmon |
|
| 46 |
37 45
|
sylancom |
|
| 47 |
|
simplr |
|
| 48 |
46 47
|
sseldd |
|
| 49 |
48
|
snssd |
|
| 50 |
41 49
|
unssd |
|
| 51 |
37 40 50
|
rspcedvd |
|
| 52 |
|
simp-5r |
|
| 53 |
39
|
adantl |
|
| 54 |
|
simp-4r |
|
| 55 |
|
simplr |
|
| 56 |
|
simpr |
|
| 57 |
56
|
fveq2d |
|
| 58 |
55 57
|
eleqtrrd |
|
| 59 |
58
|
snssd |
|
| 60 |
54 59
|
unssd |
|
| 61 |
52 53 60
|
rspcedvd |
|
| 62 |
42
|
ad4antlr |
|
| 63 |
27
|
ad2antlr |
|
| 64 |
|
oneltri |
|
| 65 |
62 63 64
|
syl2anc |
|
| 66 |
36 51 61 65
|
mpjao3dan |
|
| 67 |
2
|
ad4antr |
|
| 68 |
|
simpllr |
|
| 69 |
68
|
eldifad |
|
| 70 |
67 69
|
sseldd |
|
| 71 |
1
|
isconstr |
|
| 72 |
70 71
|
sylib |
|
| 73 |
66 72
|
r19.29a |
|
| 74 |
73
|
r19.29an |
|
| 75 |
74
|
ex |
|
| 76 |
75
|
anasss |
|
| 77 |
5 7 13 15 21 76 3
|
findcard2d |
|