Metamath Proof Explorer


Theorem constrfiss

Description: For any finite set A of constructible numbers, there is a n -th step ( Cn ) containing all numbers in A . (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
constrfiss.1 φ A Constr
constrfiss.2 φ A Fin
Assertion constrfiss φ n ω A C n

Proof

Step Hyp Ref Expression
1 constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
2 constrfiss.1 φ A Constr
3 constrfiss.2 φ A Fin
4 sseq1 b = b C n C n
5 4 rexbidv b = n ω b C n n ω C n
6 sseq1 b = i b C n i C n
7 6 rexbidv b = i n ω b C n n ω i C n
8 sseq1 b = i x b C n i x C n
9 8 rexbidv b = i x n ω b C n n ω i x C n
10 fveq2 n = m C n = C m
11 10 sseq2d n = m i x C n i x C m
12 11 cbvrexvw n ω i x C n m ω i x C m
13 9 12 bitrdi b = i x n ω b C n m ω i x C m
14 sseq1 b = A b C n A C n
15 14 rexbidv b = A n ω b C n n ω A C n
16 peano1 ω
17 16 ne0ii ω
18 0ss C n
19 18 a1i φ n ω C n
20 19 reximdva0 φ ω n ω C n
21 17 20 mpan2 φ n ω C n
22 simpllr φ i A x A i n ω i C n l ω x C l n l l ω
23 fveq2 m = l C m = C l
24 23 sseq2d m = l i x C m i x C l
25 24 adantl φ i A x A i n ω i C n l ω x C l n l m = l i x C m i x C l
26 simp-4r φ i A x A i n ω i C n l ω x C l n l i C n
27 nnon l ω l On
28 27 adantr l ω n l l On
29 simpr l ω n l n l
30 1 28 29 constrmon l ω n l C n C l
31 22 30 sylancom φ i A x A i n ω i C n l ω x C l n l C n C l
32 26 31 sstrd φ i A x A i n ω i C n l ω x C l n l i C l
33 simplr φ i A x A i n ω i C n l ω x C l n l x C l
34 33 snssd φ i A x A i n ω i C n l ω x C l n l x C l
35 32 34 unssd φ i A x A i n ω i C n l ω x C l n l i x C l
36 22 25 35 rspcedvd φ i A x A i n ω i C n l ω x C l n l m ω i x C m
37 simp-5r φ i A x A i n ω i C n l ω x C l l n n ω
38 fveq2 m = n C m = C n
39 38 sseq2d m = n i x C m i x C n
40 39 adantl φ i A x A i n ω i C n l ω x C l l n m = n i x C m i x C n
41 simp-4r φ i A x A i n ω i C n l ω x C l l n i C n
42 nnon n ω n On
43 42 adantr n ω l n n On
44 simpr n ω l n l n
45 1 43 44 constrmon n ω l n C l C n
46 37 45 sylancom φ i A x A i n ω i C n l ω x C l l n C l C n
47 simplr φ i A x A i n ω i C n l ω x C l l n x C l
48 46 47 sseldd φ i A x A i n ω i C n l ω x C l l n x C n
49 48 snssd φ i A x A i n ω i C n l ω x C l l n x C n
50 41 49 unssd φ i A x A i n ω i C n l ω x C l l n i x C n
51 37 40 50 rspcedvd φ i A x A i n ω i C n l ω x C l l n m ω i x C m
52 simp-5r φ i A x A i n ω i C n l ω x C l n = l n ω
53 39 adantl φ i A x A i n ω i C n l ω x C l n = l m = n i x C m i x C n
54 simp-4r φ i A x A i n ω i C n l ω x C l n = l i C n
55 simplr φ i A x A i n ω i C n l ω x C l n = l x C l
56 simpr φ i A x A i n ω i C n l ω x C l n = l n = l
57 56 fveq2d φ i A x A i n ω i C n l ω x C l n = l C n = C l
58 55 57 eleqtrrd φ i A x A i n ω i C n l ω x C l n = l x C n
59 58 snssd φ i A x A i n ω i C n l ω x C l n = l x C n
60 54 59 unssd φ i A x A i n ω i C n l ω x C l n = l i x C n
61 52 53 60 rspcedvd φ i A x A i n ω i C n l ω x C l n = l m ω i x C m
62 42 ad4antlr φ i A x A i n ω i C n l ω x C l n On
63 27 ad2antlr φ i A x A i n ω i C n l ω x C l l On
64 oneltri n On l On n l l n n = l
65 62 63 64 syl2anc φ i A x A i n ω i C n l ω x C l n l l n n = l
66 36 51 61 65 mpjao3dan φ i A x A i n ω i C n l ω x C l m ω i x C m
67 2 ad4antr φ i A x A i n ω i C n A Constr
68 simpllr φ i A x A i n ω i C n x A i
69 68 eldifad φ i A x A i n ω i C n x A
70 67 69 sseldd φ i A x A i n ω i C n x Constr
71 1 isconstr x Constr l ω x C l
72 70 71 sylib φ i A x A i n ω i C n l ω x C l
73 66 72 r19.29a φ i A x A i n ω i C n m ω i x C m
74 73 r19.29an φ i A x A i n ω i C n m ω i x C m
75 74 ex φ i A x A i n ω i C n m ω i x C m
76 75 anasss φ i A x A i n ω i C n m ω i x C m
77 5 7 13 15 21 76 3 findcard2d φ n ω A C n