| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
⊢ 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑 − 𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏 − 𝑎 ) ) · ( 𝑑 − 𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ∃ 𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏 − 𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥 − 𝑐 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ∨ ∃ 𝑎 ∈ 𝑠 ∃ 𝑏 ∈ 𝑠 ∃ 𝑐 ∈ 𝑠 ∃ 𝑑 ∈ 𝑠 ∃ 𝑒 ∈ 𝑠 ∃ 𝑓 ∈ 𝑠 ( 𝑎 ≠ 𝑑 ∧ ( abs ‘ ( 𝑥 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑐 ) ) ∧ ( abs ‘ ( 𝑥 − 𝑑 ) ) = ( abs ‘ ( 𝑒 − 𝑓 ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrfiss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ Constr ) |
| 3 |
|
constrfiss.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 4 |
|
sseq1 |
⊢ ( 𝑏 = ∅ → ( 𝑏 ⊆ ( 𝐶 ‘ 𝑛 ) ↔ ∅ ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 5 |
4
|
rexbidv |
⊢ ( 𝑏 = ∅ → ( ∃ 𝑛 ∈ ω 𝑏 ⊆ ( 𝐶 ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ω ∅ ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 6 |
|
sseq1 |
⊢ ( 𝑏 = 𝑖 → ( 𝑏 ⊆ ( 𝐶 ‘ 𝑛 ) ↔ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 7 |
6
|
rexbidv |
⊢ ( 𝑏 = 𝑖 → ( ∃ 𝑛 ∈ ω 𝑏 ⊆ ( 𝐶 ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ω 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 8 |
|
sseq1 |
⊢ ( 𝑏 = ( 𝑖 ∪ { 𝑥 } ) → ( 𝑏 ⊆ ( 𝐶 ‘ 𝑛 ) ↔ ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 9 |
8
|
rexbidv |
⊢ ( 𝑏 = ( 𝑖 ∪ { 𝑥 } ) → ( ∃ 𝑛 ∈ ω 𝑏 ⊆ ( 𝐶 ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑚 ) ) |
| 11 |
10
|
sseq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ↔ ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ) ) |
| 12 |
11
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ↔ ∃ 𝑚 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ) |
| 13 |
9 12
|
bitrdi |
⊢ ( 𝑏 = ( 𝑖 ∪ { 𝑥 } ) → ( ∃ 𝑛 ∈ ω 𝑏 ⊆ ( 𝐶 ‘ 𝑛 ) ↔ ∃ 𝑚 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ) ) |
| 14 |
|
sseq1 |
⊢ ( 𝑏 = 𝐴 → ( 𝑏 ⊆ ( 𝐶 ‘ 𝑛 ) ↔ 𝐴 ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 15 |
14
|
rexbidv |
⊢ ( 𝑏 = 𝐴 → ( ∃ 𝑛 ∈ ω 𝑏 ⊆ ( 𝐶 ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ω 𝐴 ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 16 |
|
peano1 |
⊢ ∅ ∈ ω |
| 17 |
16
|
ne0ii |
⊢ ω ≠ ∅ |
| 18 |
|
0ss |
⊢ ∅ ⊆ ( 𝐶 ‘ 𝑛 ) |
| 19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ω ) → ∅ ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 20 |
19
|
reximdva0 |
⊢ ( ( 𝜑 ∧ ω ≠ ∅ ) → ∃ 𝑛 ∈ ω ∅ ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 21 |
17 20
|
mpan2 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ω ∅ ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 22 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 ∈ 𝑙 ) → 𝑙 ∈ ω ) |
| 23 |
|
fveq2 |
⊢ ( 𝑚 = 𝑙 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑙 ) ) |
| 24 |
23
|
sseq2d |
⊢ ( 𝑚 = 𝑙 → ( ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ↔ ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑙 ) ) ) |
| 25 |
24
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 ∈ 𝑙 ) ∧ 𝑚 = 𝑙 ) → ( ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ↔ ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑙 ) ) ) |
| 26 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 ∈ 𝑙 ) → 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 27 |
|
nnon |
⊢ ( 𝑙 ∈ ω → 𝑙 ∈ On ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝑙 ∈ ω ∧ 𝑛 ∈ 𝑙 ) → 𝑙 ∈ On ) |
| 29 |
|
simpr |
⊢ ( ( 𝑙 ∈ ω ∧ 𝑛 ∈ 𝑙 ) → 𝑛 ∈ 𝑙 ) |
| 30 |
1 28 29
|
constrmon |
⊢ ( ( 𝑙 ∈ ω ∧ 𝑛 ∈ 𝑙 ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( 𝐶 ‘ 𝑙 ) ) |
| 31 |
22 30
|
sylancom |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 ∈ 𝑙 ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( 𝐶 ‘ 𝑙 ) ) |
| 32 |
26 31
|
sstrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 ∈ 𝑙 ) → 𝑖 ⊆ ( 𝐶 ‘ 𝑙 ) ) |
| 33 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 ∈ 𝑙 ) → 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) |
| 34 |
33
|
snssd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 ∈ 𝑙 ) → { 𝑥 } ⊆ ( 𝐶 ‘ 𝑙 ) ) |
| 35 |
32 34
|
unssd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 ∈ 𝑙 ) → ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑙 ) ) |
| 36 |
22 25 35
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 ∈ 𝑙 ) → ∃ 𝑚 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ) |
| 37 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑛 ) → 𝑛 ∈ ω ) |
| 38 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ 𝑛 ) ) |
| 39 |
38
|
sseq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ↔ ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑛 ) ∧ 𝑚 = 𝑛 ) → ( ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ↔ ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 41 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑛 ) → 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 42 |
|
nnon |
⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑙 ∈ 𝑛 ) → 𝑛 ∈ On ) |
| 44 |
|
simpr |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑙 ∈ 𝑛 ) → 𝑙 ∈ 𝑛 ) |
| 45 |
1 43 44
|
constrmon |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑙 ∈ 𝑛 ) → ( 𝐶 ‘ 𝑙 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 46 |
37 45
|
sylancom |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑛 ) → ( 𝐶 ‘ 𝑙 ) ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 47 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑛 ) → 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) |
| 48 |
46 47
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑛 ) → 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 49 |
48
|
snssd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑛 ) → { 𝑥 } ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 50 |
41 49
|
unssd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑛 ) → ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 51 |
37 40 50
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑙 ∈ 𝑛 ) → ∃ 𝑚 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ) |
| 52 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 = 𝑙 ) → 𝑛 ∈ ω ) |
| 53 |
39
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 = 𝑙 ) ∧ 𝑚 = 𝑛 ) → ( ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ↔ ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) ) |
| 54 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 = 𝑙 ) → 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 55 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 = 𝑙 ) → 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) |
| 56 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 = 𝑙 ) → 𝑛 = 𝑙 ) |
| 57 |
56
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 = 𝑙 ) → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑙 ) ) |
| 58 |
55 57
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 = 𝑙 ) → 𝑥 ∈ ( 𝐶 ‘ 𝑛 ) ) |
| 59 |
58
|
snssd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 = 𝑙 ) → { 𝑥 } ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 60 |
54 59
|
unssd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 = 𝑙 ) → ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑛 ) ) |
| 61 |
52 53 60
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) ∧ 𝑛 = 𝑙 ) → ∃ 𝑚 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ) |
| 62 |
42
|
ad4antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) → 𝑛 ∈ On ) |
| 63 |
27
|
ad2antlr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) → 𝑙 ∈ On ) |
| 64 |
|
oneltri |
⊢ ( ( 𝑛 ∈ On ∧ 𝑙 ∈ On ) → ( 𝑛 ∈ 𝑙 ∨ 𝑙 ∈ 𝑛 ∨ 𝑛 = 𝑙 ) ) |
| 65 |
62 63 64
|
syl2anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) → ( 𝑛 ∈ 𝑙 ∨ 𝑙 ∈ 𝑛 ∨ 𝑛 = 𝑙 ) ) |
| 66 |
36 51 61 65
|
mpjao3dan |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) ∧ 𝑙 ∈ ω ) ∧ 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) → ∃ 𝑚 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ) |
| 67 |
2
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝐴 ⊆ Constr ) |
| 68 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) |
| 69 |
68
|
eldifad |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
| 70 |
67 69
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) → 𝑥 ∈ Constr ) |
| 71 |
1
|
isconstr |
⊢ ( 𝑥 ∈ Constr ↔ ∃ 𝑙 ∈ ω 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) |
| 72 |
70 71
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) → ∃ 𝑙 ∈ ω 𝑥 ∈ ( 𝐶 ‘ 𝑙 ) ) |
| 73 |
66 72
|
r19.29a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ 𝑛 ∈ ω ) ∧ 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) → ∃ 𝑚 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ) |
| 74 |
73
|
r19.29an |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ∧ ∃ 𝑛 ∈ ω 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) ) → ∃ 𝑚 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ) |
| 75 |
74
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) → ( ∃ 𝑛 ∈ ω 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) → ∃ 𝑚 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ) ) |
| 76 |
75
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑖 ⊆ 𝐴 ∧ 𝑥 ∈ ( 𝐴 ∖ 𝑖 ) ) ) → ( ∃ 𝑛 ∈ ω 𝑖 ⊆ ( 𝐶 ‘ 𝑛 ) → ∃ 𝑚 ∈ ω ( 𝑖 ∪ { 𝑥 } ) ⊆ ( 𝐶 ‘ 𝑚 ) ) ) |
| 77 |
5 7 13 15 21 76 3
|
findcard2d |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ω 𝐴 ⊆ ( 𝐶 ‘ 𝑛 ) ) |