Description: The elementhood relation on the ordinals is complete, so we have triality. Theorem 1.9(iii) of Schloeder p. 1. See ordtri3or . (Contributed by RP, 15-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oneltri | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
2 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
3 | ordtri3or | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) | |
4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) |
5 | 3orcomb | ⊢ ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵 ) ) | |
6 | 4 5 | sylib | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵 ) ) |