Metamath Proof Explorer


Theorem oneltri

Description: The elementhood relation on the ordinals is complete, so we have triality. Theorem 1.9(iii) of Schloeder p. 1. See ordtri3or . (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion oneltri ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐵𝐴𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐴 ∈ On → Ord 𝐴 )
2 eloni ( 𝐵 ∈ On → Ord 𝐵 )
3 ordtri3or ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐴 = 𝐵𝐵𝐴 ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐴 = 𝐵𝐵𝐴 ) )
5 3orcomb ( ( 𝐴𝐵𝐴 = 𝐵𝐵𝐴 ) ↔ ( 𝐴𝐵𝐵𝐴𝐴 = 𝐵 ) )
6 4 5 sylib ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵𝐵𝐴𝐴 = 𝐵 ) )