Description: The elementhood relation on the ordinals is complete, so we have triality. Theorem 1.9(iii) of Schloeder p. 1. See ordtri3or . (Contributed by RP, 15-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oneltri | |- ( ( A e. On /\ B e. On ) -> ( A e. B \/ B e. A \/ A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | |- ( A e. On -> Ord A ) |
|
| 2 | eloni | |- ( B e. On -> Ord B ) |
|
| 3 | ordtri3or | |- ( ( Ord A /\ Ord B ) -> ( A e. B \/ A = B \/ B e. A ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. On /\ B e. On ) -> ( A e. B \/ A = B \/ B e. A ) ) |
| 5 | 3orcomb | |- ( ( A e. B \/ A = B \/ B e. A ) <-> ( A e. B \/ B e. A \/ A = B ) ) |
|
| 6 | 4 5 | sylib | |- ( ( A e. On /\ B e. On ) -> ( A e. B \/ B e. A \/ A = B ) ) |