Metamath Proof Explorer


Theorem oneltri

Description: The elementhood relation on the ordinals is complete, so we have triality. Theorem 1.9(iii) of Schloeder p. 1. See ordtri3or . (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion oneltri
|- ( ( A e. On /\ B e. On ) -> ( A e. B \/ B e. A \/ A = B ) )

Proof

Step Hyp Ref Expression
1 eloni
 |-  ( A e. On -> Ord A )
2 eloni
 |-  ( B e. On -> Ord B )
3 ordtri3or
 |-  ( ( Ord A /\ Ord B ) -> ( A e. B \/ A = B \/ B e. A ) )
4 1 2 3 syl2an
 |-  ( ( A e. On /\ B e. On ) -> ( A e. B \/ A = B \/ B e. A ) )
5 3orcomb
 |-  ( ( A e. B \/ A = B \/ B e. A ) <-> ( A e. B \/ B e. A \/ A = B ) )
6 4 5 sylib
 |-  ( ( A e. On /\ B e. On ) -> ( A e. B \/ B e. A \/ A = B ) )