Metamath Proof Explorer


Theorem constrllcllem

Description: Constructible numbers are closed under line-line intersections. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
constrllcllem.a ( 𝜑𝐴 ∈ Constr )
constrllcllem.b ( 𝜑𝐵 ∈ Constr )
constrllcllem.c ( 𝜑𝐺 ∈ Constr )
constrllcllem.e ( 𝜑𝐷 ∈ Constr )
constrllcllem.t ( 𝜑𝑇 ∈ ℝ )
constrllcllem.r ( 𝜑𝑅 ∈ ℝ )
constrllcllem.x ( 𝜑𝑋 ∈ ℂ )
constrllcllem.1 ( 𝜑𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) )
constrllcllem.2 ( 𝜑𝑋 = ( 𝐺 + ( 𝑅 · ( 𝐷𝐺 ) ) ) )
constrllcllem.3 ( 𝜑 → ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 )
Assertion constrllcllem ( 𝜑𝑋 ∈ Constr )

Proof

Step Hyp Ref Expression
1 constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
2 constrllcllem.a ( 𝜑𝐴 ∈ Constr )
3 constrllcllem.b ( 𝜑𝐵 ∈ Constr )
4 constrllcllem.c ( 𝜑𝐺 ∈ Constr )
5 constrllcllem.e ( 𝜑𝐷 ∈ Constr )
6 constrllcllem.t ( 𝜑𝑇 ∈ ℝ )
7 constrllcllem.r ( 𝜑𝑅 ∈ ℝ )
8 constrllcllem.x ( 𝜑𝑋 ∈ ℂ )
9 constrllcllem.1 ( 𝜑𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) )
10 constrllcllem.2 ( 𝜑𝑋 = ( 𝐺 + ( 𝑅 · ( 𝐷𝐺 ) ) ) )
11 constrllcllem.3 ( 𝜑 → ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 )
12 peano2b ( 𝑛 ∈ ω ↔ suc 𝑛 ∈ ω )
13 12 biimpi ( 𝑛 ∈ ω → suc 𝑛 ∈ ω )
14 13 ad2antlr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → suc 𝑛 ∈ ω )
15 fveq2 ( 𝑚 = suc 𝑛 → ( 𝐶𝑚 ) = ( 𝐶 ‘ suc 𝑛 ) )
16 15 eleq2d ( 𝑚 = suc 𝑛 → ( 𝑋 ∈ ( 𝐶𝑚 ) ↔ 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) ) )
17 16 adantl ( ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) ∧ 𝑚 = suc 𝑛 ) → ( 𝑋 ∈ ( 𝐶𝑚 ) ↔ 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) ) )
18 8 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑋 ∈ ℂ )
19 id ( 𝑎 = 𝐴𝑎 = 𝐴 )
20 oveq2 ( 𝑎 = 𝐴 → ( 𝑏𝑎 ) = ( 𝑏𝐴 ) )
21 20 oveq2d ( 𝑎 = 𝐴 → ( 𝑡 · ( 𝑏𝑎 ) ) = ( 𝑡 · ( 𝑏𝐴 ) ) )
22 19 21 oveq12d ( 𝑎 = 𝐴 → ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) )
23 22 eqeq2d ( 𝑎 = 𝐴 → ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ↔ 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ) )
24 20 fveq2d ( 𝑎 = 𝐴 → ( ∗ ‘ ( 𝑏𝑎 ) ) = ( ∗ ‘ ( 𝑏𝐴 ) ) )
25 24 oveq1d ( 𝑎 = 𝐴 → ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) = ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) )
26 25 fveq2d ( 𝑎 = 𝐴 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) ) )
27 26 neeq1d ( 𝑎 = 𝐴 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
28 23 27 3anbi13d ( 𝑎 = 𝐴 → ( ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
29 28 rexbidv ( 𝑎 = 𝐴 → ( ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
30 29 2rexbidv ( 𝑎 = 𝐴 → ( ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
31 oveq1 ( 𝑏 = 𝐵 → ( 𝑏𝐴 ) = ( 𝐵𝐴 ) )
32 31 oveq2d ( 𝑏 = 𝐵 → ( 𝑡 · ( 𝑏𝐴 ) ) = ( 𝑡 · ( 𝐵𝐴 ) ) )
33 32 oveq2d ( 𝑏 = 𝐵 → ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) )
34 33 eqeq2d ( 𝑏 = 𝐵 → ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ↔ 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ) )
35 31 fveq2d ( 𝑏 = 𝐵 → ( ∗ ‘ ( 𝑏𝐴 ) ) = ( ∗ ‘ ( 𝐵𝐴 ) ) )
36 35 oveq1d ( 𝑏 = 𝐵 → ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) = ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) )
37 36 fveq2d ( 𝑏 = 𝐵 → ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) ) )
38 37 neeq1d ( 𝑏 = 𝐵 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
39 34 38 3anbi13d ( 𝑏 = 𝐵 → ( ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
40 39 rexbidv ( 𝑏 = 𝐵 → ( ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
41 40 2rexbidv ( 𝑏 = 𝐵 → ( ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ) )
42 id ( 𝑐 = 𝐺𝑐 = 𝐺 )
43 oveq2 ( 𝑐 = 𝐺 → ( 𝑑𝑐 ) = ( 𝑑𝐺 ) )
44 43 oveq2d ( 𝑐 = 𝐺 → ( 𝑟 · ( 𝑑𝑐 ) ) = ( 𝑟 · ( 𝑑𝐺 ) ) )
45 42 44 oveq12d ( 𝑐 = 𝐺 → ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) = ( 𝐺 + ( 𝑟 · ( 𝑑𝐺 ) ) ) )
46 45 eqeq2d ( 𝑐 = 𝐺 → ( 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ↔ 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝑑𝐺 ) ) ) ) )
47 43 oveq2d ( 𝑐 = 𝐺 → ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) = ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝐺 ) ) )
48 47 fveq2d ( 𝑐 = 𝐺 → ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝐺 ) ) ) )
49 48 neeq1d ( 𝑐 = 𝐺 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝐺 ) ) ) ≠ 0 ) )
50 46 49 3anbi23d ( 𝑐 = 𝐺 → ( ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝑑𝐺 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝐺 ) ) ) ≠ 0 ) ) )
51 50 rexbidv ( 𝑐 = 𝐺 → ( ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝑑𝐺 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝐺 ) ) ) ≠ 0 ) ) )
52 51 2rexbidv ( 𝑐 = 𝐺 → ( ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ↔ ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝑑𝐺 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝐺 ) ) ) ≠ 0 ) ) )
53 2 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐴 ∈ Constr )
54 simpr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) )
55 54 unssad ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → { 𝐴 , 𝐵 } ⊆ ( 𝐶𝑛 ) )
56 53 55 prssad ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐴 ∈ ( 𝐶𝑛 ) )
57 3 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐵 ∈ Constr )
58 57 55 prssbd ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐵 ∈ ( 𝐶𝑛 ) )
59 4 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐺 ∈ Constr )
60 54 unssbd ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → { 𝐺 , 𝐷 } ⊆ ( 𝐶𝑛 ) )
61 59 60 prssad ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐺 ∈ ( 𝐶𝑛 ) )
62 oveq1 ( 𝑑 = 𝐷 → ( 𝑑𝐺 ) = ( 𝐷𝐺 ) )
63 62 oveq2d ( 𝑑 = 𝐷 → ( 𝑟 · ( 𝑑𝐺 ) ) = ( 𝑟 · ( 𝐷𝐺 ) ) )
64 63 oveq2d ( 𝑑 = 𝐷 → ( 𝐺 + ( 𝑟 · ( 𝑑𝐺 ) ) ) = ( 𝐺 + ( 𝑟 · ( 𝐷𝐺 ) ) ) )
65 64 eqeq2d ( 𝑑 = 𝐷 → ( 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝑑𝐺 ) ) ) ↔ 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝐷𝐺 ) ) ) ) )
66 62 oveq2d ( 𝑑 = 𝐷 → ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝐺 ) ) = ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) )
67 66 fveq2d ( 𝑑 = 𝐷 → ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝐺 ) ) ) = ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) )
68 67 neeq1d ( 𝑑 = 𝐷 → ( ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝐺 ) ) ) ≠ 0 ↔ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 ) )
69 65 68 3anbi23d ( 𝑑 = 𝐷 → ( ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝑑𝐺 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝐺 ) ) ) ≠ 0 ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝐷𝐺 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 ) ) )
70 oveq1 ( 𝑡 = 𝑇 → ( 𝑡 · ( 𝐵𝐴 ) ) = ( 𝑇 · ( 𝐵𝐴 ) ) )
71 70 oveq2d ( 𝑡 = 𝑇 → ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) )
72 71 eqeq2d ( 𝑡 = 𝑇 → ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ↔ 𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) ) )
73 72 3anbi1d ( 𝑡 = 𝑇 → ( ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝐷𝐺 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝐷𝐺 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 ) ) )
74 oveq1 ( 𝑟 = 𝑅 → ( 𝑟 · ( 𝐷𝐺 ) ) = ( 𝑅 · ( 𝐷𝐺 ) ) )
75 74 oveq2d ( 𝑟 = 𝑅 → ( 𝐺 + ( 𝑟 · ( 𝐷𝐺 ) ) ) = ( 𝐺 + ( 𝑅 · ( 𝐷𝐺 ) ) ) )
76 75 eqeq2d ( 𝑟 = 𝑅 → ( 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝐷𝐺 ) ) ) ↔ 𝑋 = ( 𝐺 + ( 𝑅 · ( 𝐷𝐺 ) ) ) ) )
77 76 3anbi2d ( 𝑟 = 𝑅 → ( ( 𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝐷𝐺 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝐺 + ( 𝑅 · ( 𝐷𝐺 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 ) ) )
78 5 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐷 ∈ Constr )
79 78 60 prssbd ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐷 ∈ ( 𝐶𝑛 ) )
80 6 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑇 ∈ ℝ )
81 7 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑅 ∈ ℝ )
82 9 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) )
83 10 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑋 = ( 𝐺 + ( 𝑅 · ( 𝐷𝐺 ) ) ) )
84 11 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 )
85 82 83 84 3jca ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → ( 𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝐺 + ( 𝑅 · ( 𝐷𝐺 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝐷𝐺 ) ) ) ≠ 0 ) )
86 69 73 77 79 80 81 85 3rspcedvdw ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ 𝑋 = ( 𝐺 + ( 𝑟 · ( 𝑑𝐺 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝐵𝐴 ) ) · ( 𝑑𝐺 ) ) ) ≠ 0 ) )
87 30 41 52 56 58 61 86 3rspcedvdw ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) )
88 87 3mix1d ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑋𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑋𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
89 nnon ( 𝑛 ∈ ω → 𝑛 ∈ On )
90 89 ad2antlr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑛 ∈ On )
91 eqid ( 𝐶𝑛 ) = ( 𝐶𝑛 )
92 1 90 91 constrsuc ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → ( 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( 𝑋 ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑋𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑋𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) ) )
93 18 88 92 mpbir2and ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) )
94 14 17 93 rspcedvd ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → ∃ 𝑚 ∈ ω 𝑋 ∈ ( 𝐶𝑚 ) )
95 1 isconstr ( 𝑋 ∈ Constr ↔ ∃ 𝑚 ∈ ω 𝑋 ∈ ( 𝐶𝑚 ) )
96 94 95 sylibr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑋 ∈ Constr )
97 2 3 prssd ( 𝜑 → { 𝐴 , 𝐵 } ⊆ Constr )
98 4 5 prssd ( 𝜑 → { 𝐺 , 𝐷 } ⊆ Constr )
99 97 98 unssd ( 𝜑 → ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ Constr )
100 prfi { 𝐴 , 𝐵 } ∈ Fin
101 100 a1i ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin )
102 prfi { 𝐺 , 𝐷 } ∈ Fin
103 102 a1i ( 𝜑 → { 𝐺 , 𝐷 } ∈ Fin )
104 101 103 unfid ( 𝜑 → ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ∈ Fin )
105 1 99 104 constrfiss ( 𝜑 → ∃ 𝑛 ∈ ω ( { 𝐴 , 𝐵 } ∪ { 𝐺 , 𝐷 } ) ⊆ ( 𝐶𝑛 ) )
106 96 105 r19.29a ( 𝜑𝑋 ∈ Constr )