| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrllcllem.a |
|- ( ph -> A e. Constr ) |
| 3 |
|
constrllcllem.b |
|- ( ph -> B e. Constr ) |
| 4 |
|
constrllcllem.c |
|- ( ph -> G e. Constr ) |
| 5 |
|
constrllcllem.e |
|- ( ph -> D e. Constr ) |
| 6 |
|
constrllcllem.t |
|- ( ph -> T e. RR ) |
| 7 |
|
constrllcllem.r |
|- ( ph -> R e. RR ) |
| 8 |
|
constrllcllem.x |
|- ( ph -> X e. CC ) |
| 9 |
|
constrllcllem.1 |
|- ( ph -> X = ( A + ( T x. ( B - A ) ) ) ) |
| 10 |
|
constrllcllem.2 |
|- ( ph -> X = ( G + ( R x. ( D - G ) ) ) ) |
| 11 |
|
constrllcllem.3 |
|- ( ph -> ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) =/= 0 ) |
| 12 |
|
peano2b |
|- ( n e. _om <-> suc n e. _om ) |
| 13 |
12
|
biimpi |
|- ( n e. _om -> suc n e. _om ) |
| 14 |
13
|
ad2antlr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> suc n e. _om ) |
| 15 |
|
fveq2 |
|- ( m = suc n -> ( C ` m ) = ( C ` suc n ) ) |
| 16 |
15
|
eleq2d |
|- ( m = suc n -> ( X e. ( C ` m ) <-> X e. ( C ` suc n ) ) ) |
| 17 |
16
|
adantl |
|- ( ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) /\ m = suc n ) -> ( X e. ( C ` m ) <-> X e. ( C ` suc n ) ) ) |
| 18 |
8
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> X e. CC ) |
| 19 |
|
id |
|- ( a = A -> a = A ) |
| 20 |
|
oveq2 |
|- ( a = A -> ( b - a ) = ( b - A ) ) |
| 21 |
20
|
oveq2d |
|- ( a = A -> ( t x. ( b - a ) ) = ( t x. ( b - A ) ) ) |
| 22 |
19 21
|
oveq12d |
|- ( a = A -> ( a + ( t x. ( b - a ) ) ) = ( A + ( t x. ( b - A ) ) ) ) |
| 23 |
22
|
eqeq2d |
|- ( a = A -> ( X = ( a + ( t x. ( b - a ) ) ) <-> X = ( A + ( t x. ( b - A ) ) ) ) ) |
| 24 |
20
|
fveq2d |
|- ( a = A -> ( * ` ( b - a ) ) = ( * ` ( b - A ) ) ) |
| 25 |
24
|
oveq1d |
|- ( a = A -> ( ( * ` ( b - a ) ) x. ( d - c ) ) = ( ( * ` ( b - A ) ) x. ( d - c ) ) ) |
| 26 |
25
|
fveq2d |
|- ( a = A -> ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) = ( Im ` ( ( * ` ( b - A ) ) x. ( d - c ) ) ) ) |
| 27 |
26
|
neeq1d |
|- ( a = A -> ( ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 <-> ( Im ` ( ( * ` ( b - A ) ) x. ( d - c ) ) ) =/= 0 ) ) |
| 28 |
23 27
|
3anbi13d |
|- ( a = A -> ( ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) <-> ( X = ( A + ( t x. ( b - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - A ) ) x. ( d - c ) ) ) =/= 0 ) ) ) |
| 29 |
28
|
rexbidv |
|- ( a = A -> ( E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) <-> E. r e. RR ( X = ( A + ( t x. ( b - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - A ) ) x. ( d - c ) ) ) =/= 0 ) ) ) |
| 30 |
29
|
2rexbidv |
|- ( a = A -> ( E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) <-> E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( A + ( t x. ( b - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - A ) ) x. ( d - c ) ) ) =/= 0 ) ) ) |
| 31 |
|
oveq1 |
|- ( b = B -> ( b - A ) = ( B - A ) ) |
| 32 |
31
|
oveq2d |
|- ( b = B -> ( t x. ( b - A ) ) = ( t x. ( B - A ) ) ) |
| 33 |
32
|
oveq2d |
|- ( b = B -> ( A + ( t x. ( b - A ) ) ) = ( A + ( t x. ( B - A ) ) ) ) |
| 34 |
33
|
eqeq2d |
|- ( b = B -> ( X = ( A + ( t x. ( b - A ) ) ) <-> X = ( A + ( t x. ( B - A ) ) ) ) ) |
| 35 |
31
|
fveq2d |
|- ( b = B -> ( * ` ( b - A ) ) = ( * ` ( B - A ) ) ) |
| 36 |
35
|
oveq1d |
|- ( b = B -> ( ( * ` ( b - A ) ) x. ( d - c ) ) = ( ( * ` ( B - A ) ) x. ( d - c ) ) ) |
| 37 |
36
|
fveq2d |
|- ( b = B -> ( Im ` ( ( * ` ( b - A ) ) x. ( d - c ) ) ) = ( Im ` ( ( * ` ( B - A ) ) x. ( d - c ) ) ) ) |
| 38 |
37
|
neeq1d |
|- ( b = B -> ( ( Im ` ( ( * ` ( b - A ) ) x. ( d - c ) ) ) =/= 0 <-> ( Im ` ( ( * ` ( B - A ) ) x. ( d - c ) ) ) =/= 0 ) ) |
| 39 |
34 38
|
3anbi13d |
|- ( b = B -> ( ( X = ( A + ( t x. ( b - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - A ) ) x. ( d - c ) ) ) =/= 0 ) <-> ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( d - c ) ) ) =/= 0 ) ) ) |
| 40 |
39
|
rexbidv |
|- ( b = B -> ( E. r e. RR ( X = ( A + ( t x. ( b - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - A ) ) x. ( d - c ) ) ) =/= 0 ) <-> E. r e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( d - c ) ) ) =/= 0 ) ) ) |
| 41 |
40
|
2rexbidv |
|- ( b = B -> ( E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( A + ( t x. ( b - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - A ) ) x. ( d - c ) ) ) =/= 0 ) <-> E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( d - c ) ) ) =/= 0 ) ) ) |
| 42 |
|
id |
|- ( c = G -> c = G ) |
| 43 |
|
oveq2 |
|- ( c = G -> ( d - c ) = ( d - G ) ) |
| 44 |
43
|
oveq2d |
|- ( c = G -> ( r x. ( d - c ) ) = ( r x. ( d - G ) ) ) |
| 45 |
42 44
|
oveq12d |
|- ( c = G -> ( c + ( r x. ( d - c ) ) ) = ( G + ( r x. ( d - G ) ) ) ) |
| 46 |
45
|
eqeq2d |
|- ( c = G -> ( X = ( c + ( r x. ( d - c ) ) ) <-> X = ( G + ( r x. ( d - G ) ) ) ) ) |
| 47 |
43
|
oveq2d |
|- ( c = G -> ( ( * ` ( B - A ) ) x. ( d - c ) ) = ( ( * ` ( B - A ) ) x. ( d - G ) ) ) |
| 48 |
47
|
fveq2d |
|- ( c = G -> ( Im ` ( ( * ` ( B - A ) ) x. ( d - c ) ) ) = ( Im ` ( ( * ` ( B - A ) ) x. ( d - G ) ) ) ) |
| 49 |
48
|
neeq1d |
|- ( c = G -> ( ( Im ` ( ( * ` ( B - A ) ) x. ( d - c ) ) ) =/= 0 <-> ( Im ` ( ( * ` ( B - A ) ) x. ( d - G ) ) ) =/= 0 ) ) |
| 50 |
46 49
|
3anbi23d |
|- ( c = G -> ( ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( d - c ) ) ) =/= 0 ) <-> ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( G + ( r x. ( d - G ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( d - G ) ) ) =/= 0 ) ) ) |
| 51 |
50
|
rexbidv |
|- ( c = G -> ( E. r e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( d - c ) ) ) =/= 0 ) <-> E. r e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( G + ( r x. ( d - G ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( d - G ) ) ) =/= 0 ) ) ) |
| 52 |
51
|
2rexbidv |
|- ( c = G -> ( E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( d - c ) ) ) =/= 0 ) <-> E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( G + ( r x. ( d - G ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( d - G ) ) ) =/= 0 ) ) ) |
| 53 |
2
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> A e. Constr ) |
| 54 |
|
simpr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> ( { A , B } u. { G , D } ) C_ ( C ` n ) ) |
| 55 |
54
|
unssad |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> { A , B } C_ ( C ` n ) ) |
| 56 |
53 55
|
prssad |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> A e. ( C ` n ) ) |
| 57 |
3
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> B e. Constr ) |
| 58 |
57 55
|
prssbd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> B e. ( C ` n ) ) |
| 59 |
4
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> G e. Constr ) |
| 60 |
54
|
unssbd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> { G , D } C_ ( C ` n ) ) |
| 61 |
59 60
|
prssad |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> G e. ( C ` n ) ) |
| 62 |
|
oveq1 |
|- ( d = D -> ( d - G ) = ( D - G ) ) |
| 63 |
62
|
oveq2d |
|- ( d = D -> ( r x. ( d - G ) ) = ( r x. ( D - G ) ) ) |
| 64 |
63
|
oveq2d |
|- ( d = D -> ( G + ( r x. ( d - G ) ) ) = ( G + ( r x. ( D - G ) ) ) ) |
| 65 |
64
|
eqeq2d |
|- ( d = D -> ( X = ( G + ( r x. ( d - G ) ) ) <-> X = ( G + ( r x. ( D - G ) ) ) ) ) |
| 66 |
62
|
oveq2d |
|- ( d = D -> ( ( * ` ( B - A ) ) x. ( d - G ) ) = ( ( * ` ( B - A ) ) x. ( D - G ) ) ) |
| 67 |
66
|
fveq2d |
|- ( d = D -> ( Im ` ( ( * ` ( B - A ) ) x. ( d - G ) ) ) = ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) ) |
| 68 |
67
|
neeq1d |
|- ( d = D -> ( ( Im ` ( ( * ` ( B - A ) ) x. ( d - G ) ) ) =/= 0 <-> ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) =/= 0 ) ) |
| 69 |
65 68
|
3anbi23d |
|- ( d = D -> ( ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( G + ( r x. ( d - G ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( d - G ) ) ) =/= 0 ) <-> ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( G + ( r x. ( D - G ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) =/= 0 ) ) ) |
| 70 |
|
oveq1 |
|- ( t = T -> ( t x. ( B - A ) ) = ( T x. ( B - A ) ) ) |
| 71 |
70
|
oveq2d |
|- ( t = T -> ( A + ( t x. ( B - A ) ) ) = ( A + ( T x. ( B - A ) ) ) ) |
| 72 |
71
|
eqeq2d |
|- ( t = T -> ( X = ( A + ( t x. ( B - A ) ) ) <-> X = ( A + ( T x. ( B - A ) ) ) ) ) |
| 73 |
72
|
3anbi1d |
|- ( t = T -> ( ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( G + ( r x. ( D - G ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) =/= 0 ) <-> ( X = ( A + ( T x. ( B - A ) ) ) /\ X = ( G + ( r x. ( D - G ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) =/= 0 ) ) ) |
| 74 |
|
oveq1 |
|- ( r = R -> ( r x. ( D - G ) ) = ( R x. ( D - G ) ) ) |
| 75 |
74
|
oveq2d |
|- ( r = R -> ( G + ( r x. ( D - G ) ) ) = ( G + ( R x. ( D - G ) ) ) ) |
| 76 |
75
|
eqeq2d |
|- ( r = R -> ( X = ( G + ( r x. ( D - G ) ) ) <-> X = ( G + ( R x. ( D - G ) ) ) ) ) |
| 77 |
76
|
3anbi2d |
|- ( r = R -> ( ( X = ( A + ( T x. ( B - A ) ) ) /\ X = ( G + ( r x. ( D - G ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) =/= 0 ) <-> ( X = ( A + ( T x. ( B - A ) ) ) /\ X = ( G + ( R x. ( D - G ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) =/= 0 ) ) ) |
| 78 |
5
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> D e. Constr ) |
| 79 |
78 60
|
prssbd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> D e. ( C ` n ) ) |
| 80 |
6
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> T e. RR ) |
| 81 |
7
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> R e. RR ) |
| 82 |
9
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> X = ( A + ( T x. ( B - A ) ) ) ) |
| 83 |
10
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> X = ( G + ( R x. ( D - G ) ) ) ) |
| 84 |
11
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) =/= 0 ) |
| 85 |
82 83 84
|
3jca |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> ( X = ( A + ( T x. ( B - A ) ) ) /\ X = ( G + ( R x. ( D - G ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( D - G ) ) ) =/= 0 ) ) |
| 86 |
69 73 77 79 80 81 85
|
3rspcedvdw |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ X = ( G + ( r x. ( d - G ) ) ) /\ ( Im ` ( ( * ` ( B - A ) ) x. ( d - G ) ) ) =/= 0 ) ) |
| 87 |
30 41 52 56 58 61 86
|
3rspcedvdw |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) ) |
| 88 |
87
|
3mix1d |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> ( E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 89 |
|
nnon |
|- ( n e. _om -> n e. On ) |
| 90 |
89
|
ad2antlr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> n e. On ) |
| 91 |
|
eqid |
|- ( C ` n ) = ( C ` n ) |
| 92 |
1 90 91
|
constrsuc |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> ( X e. ( C ` suc n ) <-> ( X e. CC /\ ( E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) ) ) |
| 93 |
18 88 92
|
mpbir2and |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> X e. ( C ` suc n ) ) |
| 94 |
14 17 93
|
rspcedvd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> E. m e. _om X e. ( C ` m ) ) |
| 95 |
1
|
isconstr |
|- ( X e. Constr <-> E. m e. _om X e. ( C ` m ) ) |
| 96 |
94 95
|
sylibr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B } u. { G , D } ) C_ ( C ` n ) ) -> X e. Constr ) |
| 97 |
2 3
|
prssd |
|- ( ph -> { A , B } C_ Constr ) |
| 98 |
4 5
|
prssd |
|- ( ph -> { G , D } C_ Constr ) |
| 99 |
97 98
|
unssd |
|- ( ph -> ( { A , B } u. { G , D } ) C_ Constr ) |
| 100 |
|
prfi |
|- { A , B } e. Fin |
| 101 |
100
|
a1i |
|- ( ph -> { A , B } e. Fin ) |
| 102 |
|
prfi |
|- { G , D } e. Fin |
| 103 |
102
|
a1i |
|- ( ph -> { G , D } e. Fin ) |
| 104 |
101 103
|
unfid |
|- ( ph -> ( { A , B } u. { G , D } ) e. Fin ) |
| 105 |
1 99 104
|
constrfiss |
|- ( ph -> E. n e. _om ( { A , B } u. { G , D } ) C_ ( C ` n ) ) |
| 106 |
96 105
|
r19.29a |
|- ( ph -> X e. Constr ) |