| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|- C = rec ( ( s e. _V |-> { x e. CC | ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s ( a =/= d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) ) } ) , { 0 , 1 } ) |
| 2 |
|
constrlccllem.a |
|- ( ph -> A e. Constr ) |
| 3 |
|
constrlccllem.b |
|- ( ph -> B e. Constr ) |
| 4 |
|
constrlccllem.c |
|- ( ph -> G e. Constr ) |
| 5 |
|
constrlccllem.e |
|- ( ph -> E e. Constr ) |
| 6 |
|
constrlccllem.f |
|- ( ph -> F e. Constr ) |
| 7 |
|
constrlccllem.t |
|- ( ph -> T e. RR ) |
| 8 |
|
constrlccllem.x |
|- ( ph -> X e. CC ) |
| 9 |
|
constrlccllem.1 |
|- ( ph -> X = ( A + ( T x. ( B - A ) ) ) ) |
| 10 |
|
constrlccllem.2 |
|- ( ph -> ( abs ` ( X - G ) ) = ( abs ` ( E - F ) ) ) |
| 11 |
|
peano2b |
|- ( n e. _om <-> suc n e. _om ) |
| 12 |
11
|
biimpi |
|- ( n e. _om -> suc n e. _om ) |
| 13 |
12
|
ad2antlr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> suc n e. _om ) |
| 14 |
|
fveq2 |
|- ( m = suc n -> ( C ` m ) = ( C ` suc n ) ) |
| 15 |
14
|
eleq2d |
|- ( m = suc n -> ( X e. ( C ` m ) <-> X e. ( C ` suc n ) ) ) |
| 16 |
15
|
adantl |
|- ( ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) /\ m = suc n ) -> ( X e. ( C ` m ) <-> X e. ( C ` suc n ) ) ) |
| 17 |
8
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> X e. CC ) |
| 18 |
|
id |
|- ( a = A -> a = A ) |
| 19 |
|
oveq2 |
|- ( a = A -> ( b - a ) = ( b - A ) ) |
| 20 |
19
|
oveq2d |
|- ( a = A -> ( t x. ( b - a ) ) = ( t x. ( b - A ) ) ) |
| 21 |
18 20
|
oveq12d |
|- ( a = A -> ( a + ( t x. ( b - a ) ) ) = ( A + ( t x. ( b - A ) ) ) ) |
| 22 |
21
|
eqeq2d |
|- ( a = A -> ( X = ( a + ( t x. ( b - a ) ) ) <-> X = ( A + ( t x. ( b - A ) ) ) ) ) |
| 23 |
22
|
anbi1d |
|- ( a = A -> ( ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) <-> ( X = ( A + ( t x. ( b - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 24 |
23
|
rexbidv |
|- ( a = A -> ( E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) <-> E. t e. RR ( X = ( A + ( t x. ( b - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 25 |
24
|
2rexbidv |
|- ( a = A -> ( E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) <-> E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( A + ( t x. ( b - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 26 |
|
oveq1 |
|- ( b = B -> ( b - A ) = ( B - A ) ) |
| 27 |
26
|
oveq2d |
|- ( b = B -> ( t x. ( b - A ) ) = ( t x. ( B - A ) ) ) |
| 28 |
27
|
oveq2d |
|- ( b = B -> ( A + ( t x. ( b - A ) ) ) = ( A + ( t x. ( B - A ) ) ) ) |
| 29 |
28
|
eqeq2d |
|- ( b = B -> ( X = ( A + ( t x. ( b - A ) ) ) <-> X = ( A + ( t x. ( B - A ) ) ) ) ) |
| 30 |
29
|
anbi1d |
|- ( b = B -> ( ( X = ( A + ( t x. ( b - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) <-> ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 31 |
30
|
rexbidv |
|- ( b = B -> ( E. t e. RR ( X = ( A + ( t x. ( b - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) <-> E. t e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 32 |
31
|
2rexbidv |
|- ( b = B -> ( E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( A + ( t x. ( b - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) <-> E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 33 |
|
oveq2 |
|- ( c = G -> ( X - c ) = ( X - G ) ) |
| 34 |
33
|
fveq2d |
|- ( c = G -> ( abs ` ( X - c ) ) = ( abs ` ( X - G ) ) ) |
| 35 |
34
|
eqeq1d |
|- ( c = G -> ( ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) <-> ( abs ` ( X - G ) ) = ( abs ` ( e - f ) ) ) ) |
| 36 |
35
|
anbi2d |
|- ( c = G -> ( ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) <-> ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - G ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 37 |
36
|
rexbidv |
|- ( c = G -> ( E. t e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) <-> E. t e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - G ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 38 |
37
|
2rexbidv |
|- ( c = G -> ( E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) <-> E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - G ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 39 |
2
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> A e. Constr ) |
| 40 |
|
simpr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) |
| 41 |
40
|
unssad |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> { A , B , G } C_ ( C ` n ) ) |
| 42 |
39 41
|
tpssad |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> A e. ( C ` n ) ) |
| 43 |
3
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> B e. Constr ) |
| 44 |
43 41
|
tpssbd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> B e. ( C ` n ) ) |
| 45 |
4
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> G e. Constr ) |
| 46 |
45 41
|
tpsscd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> G e. ( C ` n ) ) |
| 47 |
|
oveq1 |
|- ( e = E -> ( e - f ) = ( E - f ) ) |
| 48 |
47
|
fveq2d |
|- ( e = E -> ( abs ` ( e - f ) ) = ( abs ` ( E - f ) ) ) |
| 49 |
48
|
eqeq2d |
|- ( e = E -> ( ( abs ` ( X - G ) ) = ( abs ` ( e - f ) ) <-> ( abs ` ( X - G ) ) = ( abs ` ( E - f ) ) ) ) |
| 50 |
49
|
anbi2d |
|- ( e = E -> ( ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - G ) ) = ( abs ` ( e - f ) ) ) <-> ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - G ) ) = ( abs ` ( E - f ) ) ) ) ) |
| 51 |
|
oveq2 |
|- ( f = F -> ( E - f ) = ( E - F ) ) |
| 52 |
51
|
fveq2d |
|- ( f = F -> ( abs ` ( E - f ) ) = ( abs ` ( E - F ) ) ) |
| 53 |
52
|
eqeq2d |
|- ( f = F -> ( ( abs ` ( X - G ) ) = ( abs ` ( E - f ) ) <-> ( abs ` ( X - G ) ) = ( abs ` ( E - F ) ) ) ) |
| 54 |
53
|
anbi2d |
|- ( f = F -> ( ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - G ) ) = ( abs ` ( E - f ) ) ) <-> ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - G ) ) = ( abs ` ( E - F ) ) ) ) ) |
| 55 |
|
oveq1 |
|- ( t = T -> ( t x. ( B - A ) ) = ( T x. ( B - A ) ) ) |
| 56 |
55
|
oveq2d |
|- ( t = T -> ( A + ( t x. ( B - A ) ) ) = ( A + ( T x. ( B - A ) ) ) ) |
| 57 |
56
|
eqeq2d |
|- ( t = T -> ( X = ( A + ( t x. ( B - A ) ) ) <-> X = ( A + ( T x. ( B - A ) ) ) ) ) |
| 58 |
57
|
anbi1d |
|- ( t = T -> ( ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - G ) ) = ( abs ` ( E - F ) ) ) <-> ( X = ( A + ( T x. ( B - A ) ) ) /\ ( abs ` ( X - G ) ) = ( abs ` ( E - F ) ) ) ) ) |
| 59 |
5
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> E e. Constr ) |
| 60 |
40
|
unssbd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> { E , F } C_ ( C ` n ) ) |
| 61 |
59 60
|
prssad |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> E e. ( C ` n ) ) |
| 62 |
6
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> F e. Constr ) |
| 63 |
62 60
|
prssbd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> F e. ( C ` n ) ) |
| 64 |
7
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> T e. RR ) |
| 65 |
9
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> X = ( A + ( T x. ( B - A ) ) ) ) |
| 66 |
10
|
ad2antrr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> ( abs ` ( X - G ) ) = ( abs ` ( E - F ) ) ) |
| 67 |
65 66
|
jca |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> ( X = ( A + ( T x. ( B - A ) ) ) /\ ( abs ` ( X - G ) ) = ( abs ` ( E - F ) ) ) ) |
| 68 |
50 54 58 61 63 64 67
|
3rspcedvdw |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( A + ( t x. ( B - A ) ) ) /\ ( abs ` ( X - G ) ) = ( abs ` ( e - f ) ) ) ) |
| 69 |
25 32 38 42 44 46 68
|
3rspcedvdw |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) ) |
| 70 |
69
|
3mix2d |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> ( E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) |
| 71 |
|
nnon |
|- ( n e. _om -> n e. On ) |
| 72 |
71
|
ad2antlr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> n e. On ) |
| 73 |
|
eqid |
|- ( C ` n ) = ( C ` n ) |
| 74 |
1 72 73
|
constrsuc |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> ( X e. ( C ` suc n ) <-> ( X e. CC /\ ( E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. t e. RR E. r e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ X = ( c + ( r x. ( d - c ) ) ) /\ ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) =/= 0 ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) E. t e. RR ( X = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( X - c ) ) = ( abs ` ( e - f ) ) ) \/ E. a e. ( C ` n ) E. b e. ( C ` n ) E. c e. ( C ` n ) E. d e. ( C ` n ) E. e e. ( C ` n ) E. f e. ( C ` n ) ( a =/= d /\ ( abs ` ( X - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( X - d ) ) = ( abs ` ( e - f ) ) ) ) ) ) ) |
| 75 |
17 70 74
|
mpbir2and |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> X e. ( C ` suc n ) ) |
| 76 |
13 16 75
|
rspcedvd |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> E. m e. _om X e. ( C ` m ) ) |
| 77 |
1
|
isconstr |
|- ( X e. Constr <-> E. m e. _om X e. ( C ` m ) ) |
| 78 |
76 77
|
sylibr |
|- ( ( ( ph /\ n e. _om ) /\ ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) -> X e. Constr ) |
| 79 |
2 3 4
|
tpssd |
|- ( ph -> { A , B , G } C_ Constr ) |
| 80 |
5 6
|
prssd |
|- ( ph -> { E , F } C_ Constr ) |
| 81 |
79 80
|
unssd |
|- ( ph -> ( { A , B , G } u. { E , F } ) C_ Constr ) |
| 82 |
|
tpfi |
|- { A , B , G } e. Fin |
| 83 |
82
|
a1i |
|- ( ph -> { A , B , G } e. Fin ) |
| 84 |
|
prfi |
|- { E , F } e. Fin |
| 85 |
84
|
a1i |
|- ( ph -> { E , F } e. Fin ) |
| 86 |
83 85
|
unfid |
|- ( ph -> ( { A , B , G } u. { E , F } ) e. Fin ) |
| 87 |
1 81 86
|
constrfiss |
|- ( ph -> E. n e. _om ( { A , B , G } u. { E , F } ) C_ ( C ` n ) ) |
| 88 |
78 87
|
r19.29a |
|- ( ph -> X e. Constr ) |