Metamath Proof Explorer


Theorem tpssad

Description: If an ordered triple is a subset of a class, the first element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses tpssad.1
|- ( ph -> A e. V )
tpssad.2
|- ( ph -> { A , B , C } C_ D )
Assertion tpssad
|- ( ph -> A e. D )

Proof

Step Hyp Ref Expression
1 tpssad.1
 |-  ( ph -> A e. V )
2 tpssad.2
 |-  ( ph -> { A , B , C } C_ D )
3 1 adantr
 |-  ( ( ph /\ -. B e. _V ) -> A e. V )
4 tpcomb
 |-  { A , B , C } = { A , C , B }
5 simpr
 |-  ( ( ph /\ -. B e. _V ) -> -. B e. _V )
6 5 intnanrd
 |-  ( ( ph /\ -. B e. _V ) -> -. ( B e. _V /\ B =/= C ) )
7 tpprceq3
 |-  ( -. ( B e. _V /\ B =/= C ) -> { A , C , B } = { A , C } )
8 6 7 syl
 |-  ( ( ph /\ -. B e. _V ) -> { A , C , B } = { A , C } )
9 4 8 eqtrid
 |-  ( ( ph /\ -. B e. _V ) -> { A , B , C } = { A , C } )
10 2 adantr
 |-  ( ( ph /\ -. B e. _V ) -> { A , B , C } C_ D )
11 9 10 eqsstrrd
 |-  ( ( ph /\ -. B e. _V ) -> { A , C } C_ D )
12 3 11 prssad
 |-  ( ( ph /\ -. B e. _V ) -> A e. D )
13 1 adantr
 |-  ( ( ph /\ -. C e. _V ) -> A e. V )
14 simpr
 |-  ( ( ph /\ -. C e. _V ) -> -. C e. _V )
15 14 intnanrd
 |-  ( ( ph /\ -. C e. _V ) -> -. ( C e. _V /\ C =/= B ) )
16 tpprceq3
 |-  ( -. ( C e. _V /\ C =/= B ) -> { A , B , C } = { A , B } )
17 15 16 syl
 |-  ( ( ph /\ -. C e. _V ) -> { A , B , C } = { A , B } )
18 2 adantr
 |-  ( ( ph /\ -. C e. _V ) -> { A , B , C } C_ D )
19 17 18 eqsstrrd
 |-  ( ( ph /\ -. C e. _V ) -> { A , B } C_ D )
20 13 19 prssad
 |-  ( ( ph /\ -. C e. _V ) -> A e. D )
21 1 adantr
 |-  ( ( ph /\ ( B e. _V /\ C e. _V ) ) -> A e. V )
22 simprl
 |-  ( ( ph /\ ( B e. _V /\ C e. _V ) ) -> B e. _V )
23 simprr
 |-  ( ( ph /\ ( B e. _V /\ C e. _V ) ) -> C e. _V )
24 2 adantr
 |-  ( ( ph /\ ( B e. _V /\ C e. _V ) ) -> { A , B , C } C_ D )
25 tpssg
 |-  ( ( A e. V /\ B e. _V /\ C e. _V ) -> ( ( A e. D /\ B e. D /\ C e. D ) <-> { A , B , C } C_ D ) )
26 25 biimpar
 |-  ( ( ( A e. V /\ B e. _V /\ C e. _V ) /\ { A , B , C } C_ D ) -> ( A e. D /\ B e. D /\ C e. D ) )
27 21 22 23 24 26 syl31anc
 |-  ( ( ph /\ ( B e. _V /\ C e. _V ) ) -> ( A e. D /\ B e. D /\ C e. D ) )
28 27 simp1d
 |-  ( ( ph /\ ( B e. _V /\ C e. _V ) ) -> A e. D )
29 12 20 28 pm2.61dda
 |-  ( ph -> A e. D )