Metamath Proof Explorer


Theorem tpssad

Description: If an ordered triple is a subset of a class, the first element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses tpssad.1 φ A V
tpssad.2 φ A B C D
Assertion tpssad φ A D

Proof

Step Hyp Ref Expression
1 tpssad.1 φ A V
2 tpssad.2 φ A B C D
3 1 adantr φ ¬ B V A V
4 tpcomb A B C = A C B
5 simpr φ ¬ B V ¬ B V
6 5 intnanrd φ ¬ B V ¬ B V B C
7 tpprceq3 ¬ B V B C A C B = A C
8 6 7 syl φ ¬ B V A C B = A C
9 4 8 eqtrid φ ¬ B V A B C = A C
10 2 adantr φ ¬ B V A B C D
11 9 10 eqsstrrd φ ¬ B V A C D
12 3 11 prssad φ ¬ B V A D
13 1 adantr φ ¬ C V A V
14 simpr φ ¬ C V ¬ C V
15 14 intnanrd φ ¬ C V ¬ C V C B
16 tpprceq3 ¬ C V C B A B C = A B
17 15 16 syl φ ¬ C V A B C = A B
18 2 adantr φ ¬ C V A B C D
19 17 18 eqsstrrd φ ¬ C V A B D
20 13 19 prssad φ ¬ C V A D
21 1 adantr φ B V C V A V
22 simprl φ B V C V B V
23 simprr φ B V C V C V
24 2 adantr φ B V C V A B C D
25 tpssg A V B V C V A D B D C D A B C D
26 25 biimpar A V B V C V A B C D A D B D C D
27 21 22 23 24 26 syl31anc φ B V C V A D B D C D
28 27 simp1d φ B V C V A D
29 12 20 28 pm2.61dda φ A D