| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tpssad.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
tpssad.2 |
⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) |
| 3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → 𝐴 ∈ 𝑉 ) |
| 4 |
|
tpcomb |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐶 , 𝐵 } |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → ¬ 𝐵 ∈ V ) |
| 6 |
5
|
intnanrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → ¬ ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐶 ) ) |
| 7 |
|
tpprceq3 |
⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐶 ) → { 𝐴 , 𝐶 , 𝐵 } = { 𝐴 , 𝐶 } ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐶 , 𝐵 } = { 𝐴 , 𝐶 } ) |
| 9 |
4 8
|
eqtrid |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐶 } ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) |
| 11 |
9 10
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐶 } ⊆ 𝐷 ) |
| 12 |
3 11
|
prssad |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → 𝐴 ∈ 𝐷 ) |
| 13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → 𝐴 ∈ 𝑉 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ¬ 𝐶 ∈ V ) |
| 15 |
14
|
intnanrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐵 ) ) |
| 16 |
|
tpprceq3 |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐵 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 18 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) |
| 19 |
17 18
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ⊆ 𝐷 ) |
| 20 |
13 19
|
prssad |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → 𝐴 ∈ 𝐷 ) |
| 21 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐴 ∈ 𝑉 ) |
| 22 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐵 ∈ V ) |
| 23 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐶 ∈ V ) |
| 24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) |
| 25 |
|
tpssg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) ) |
| 26 |
25
|
biimpar |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ∧ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) → ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ) |
| 27 |
21 22 23 24 26
|
syl31anc |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ) |
| 28 |
27
|
simp1d |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐴 ∈ 𝐷 ) |
| 29 |
12 20 28
|
pm2.61dda |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |