Metamath Proof Explorer


Theorem tpssad

Description: If an ordered triple is a subset of a class, the first element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses tpssad.1 ( 𝜑𝐴𝑉 )
tpssad.2 ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )
Assertion tpssad ( 𝜑𝐴𝐷 )

Proof

Step Hyp Ref Expression
1 tpssad.1 ( 𝜑𝐴𝑉 )
2 tpssad.2 ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )
3 1 adantr ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → 𝐴𝑉 )
4 tpcomb { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐶 , 𝐵 }
5 simpr ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → ¬ 𝐵 ∈ V )
6 5 intnanrd ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → ¬ ( 𝐵 ∈ V ∧ 𝐵𝐶 ) )
7 tpprceq3 ( ¬ ( 𝐵 ∈ V ∧ 𝐵𝐶 ) → { 𝐴 , 𝐶 , 𝐵 } = { 𝐴 , 𝐶 } )
8 6 7 syl ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐶 , 𝐵 } = { 𝐴 , 𝐶 } )
9 4 8 eqtrid ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐶 } )
10 2 adantr ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )
11 9 10 eqsstrrd ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐶 } ⊆ 𝐷 )
12 3 11 prssad ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → 𝐴𝐷 )
13 1 adantr ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → 𝐴𝑉 )
14 simpr ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ¬ 𝐶 ∈ V )
15 14 intnanrd ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → ¬ ( 𝐶 ∈ V ∧ 𝐶𝐵 ) )
16 tpprceq3 ( ¬ ( 𝐶 ∈ V ∧ 𝐶𝐵 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } )
17 15 16 syl ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } )
18 2 adantr ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )
19 17 18 eqsstrrd ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ⊆ 𝐷 )
20 13 19 prssad ( ( 𝜑 ∧ ¬ 𝐶 ∈ V ) → 𝐴𝐷 )
21 1 adantr ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐴𝑉 )
22 simprl ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐵 ∈ V )
23 simprr ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐶 ∈ V )
24 2 adantr ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )
25 tpssg ( ( 𝐴𝑉𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝐴𝐷𝐵𝐷𝐶𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) )
26 25 biimpar ( ( ( 𝐴𝑉𝐵 ∈ V ∧ 𝐶 ∈ V ) ∧ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) → ( 𝐴𝐷𝐵𝐷𝐶𝐷 ) )
27 21 22 23 24 26 syl31anc ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( 𝐴𝐷𝐵𝐷𝐶𝐷 ) )
28 27 simp1d ( ( 𝜑 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐴𝐷 )
29 12 20 28 pm2.61dda ( 𝜑𝐴𝐷 )