Metamath Proof Explorer


Theorem tpprceq3

Description: An unordered triple is an unordered pair if one of its elements is a proper class or is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017)

Ref Expression
Assertion tpprceq3 ( ¬ ( 𝐶 ∈ V ∧ 𝐶𝐵 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 ianor ( ¬ ( 𝐶 ∈ V ∧ 𝐶𝐵 ) ↔ ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶𝐵 ) )
2 prprc2 ( ¬ 𝐶 ∈ V → { 𝐵 , 𝐶 } = { 𝐵 } )
3 2 uneq1d ( ¬ 𝐶 ∈ V → ( { 𝐵 , 𝐶 } ∪ { 𝐴 } ) = ( { 𝐵 } ∪ { 𝐴 } ) )
4 tprot { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 }
5 df-tp { 𝐵 , 𝐶 , 𝐴 } = ( { 𝐵 , 𝐶 } ∪ { 𝐴 } )
6 4 5 eqtri { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐵 , 𝐶 } ∪ { 𝐴 } )
7 prcom { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 }
8 df-pr { 𝐵 , 𝐴 } = ( { 𝐵 } ∪ { 𝐴 } )
9 7 8 eqtri { 𝐴 , 𝐵 } = ( { 𝐵 } ∪ { 𝐴 } )
10 3 6 9 3eqtr4g ( ¬ 𝐶 ∈ V → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } )
11 nne ( ¬ 𝐶𝐵𝐶 = 𝐵 )
12 tppreq3 ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } )
13 12 eqcoms ( 𝐶 = 𝐵 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } )
14 11 13 sylbi ( ¬ 𝐶𝐵 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } )
15 10 14 jaoi ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶𝐵 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } )
16 1 15 sylbi ( ¬ ( 𝐶 ∈ V ∧ 𝐶𝐵 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } )