Metamath Proof Explorer


Theorem tppreq3

Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017)

Ref Expression
Assertion tppreq3 ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 tpeq3 ( 𝐶 = 𝐵 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 , 𝐵 } )
2 1 eqcoms ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 , 𝐵 } )
3 tpidm23 { 𝐴 , 𝐵 , 𝐵 } = { 𝐴 , 𝐵 }
4 2 3 eqtrdi ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } )