Description: If an ordered triple is a subset of a class, the second element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpssbd.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| tpssbd.2 | ⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) | ||
| Assertion | tpssbd | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpssbd.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 2 | tpssbd.2 | ⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) | |
| 3 | tprot | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } | |
| 4 | 3 2 | eqsstrrid | ⊢ ( 𝜑 → { 𝐵 , 𝐶 , 𝐴 } ⊆ 𝐷 ) |
| 5 | 1 4 | tpssad | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |