Metamath Proof Explorer


Theorem tpssbd

Description: If an ordered triple is a subset of a class, the second element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses tpssbd.1 ( 𝜑𝐵𝑉 )
tpssbd.2 ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )
Assertion tpssbd ( 𝜑𝐵𝐷 )

Proof

Step Hyp Ref Expression
1 tpssbd.1 ( 𝜑𝐵𝑉 )
2 tpssbd.2 ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )
3 tprot { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 }
4 3 2 eqsstrrid ( 𝜑 → { 𝐵 , 𝐶 , 𝐴 } ⊆ 𝐷 )
5 1 4 tpssad ( 𝜑𝐵𝐷 )