Description: If an ordered triple is a subset of a class, the second element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpssbd.1 | |- ( ph -> B e. V ) |
|
| tpssbd.2 | |- ( ph -> { A , B , C } C_ D ) |
||
| Assertion | tpssbd | |- ( ph -> B e. D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpssbd.1 | |- ( ph -> B e. V ) |
|
| 2 | tpssbd.2 | |- ( ph -> { A , B , C } C_ D ) |
|
| 3 | tprot | |- { A , B , C } = { B , C , A } |
|
| 4 | 3 2 | eqsstrrid | |- ( ph -> { B , C , A } C_ D ) |
| 5 | 1 4 | tpssad | |- ( ph -> B e. D ) |