Metamath Proof Explorer


Theorem tpssbd

Description: If an ordered triple is a subset of a class, the second element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses tpssbd.1
|- ( ph -> B e. V )
tpssbd.2
|- ( ph -> { A , B , C } C_ D )
Assertion tpssbd
|- ( ph -> B e. D )

Proof

Step Hyp Ref Expression
1 tpssbd.1
 |-  ( ph -> B e. V )
2 tpssbd.2
 |-  ( ph -> { A , B , C } C_ D )
3 tprot
 |-  { A , B , C } = { B , C , A }
4 3 2 eqsstrrid
 |-  ( ph -> { B , C , A } C_ D )
5 1 4 tpssad
 |-  ( ph -> B e. D )