Metamath Proof Explorer


Theorem tpsscd

Description: If an ordered triple is a subset of a class, the third element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses tpsscd.1
|- ( ph -> C e. V )
tpsscd.2
|- ( ph -> { A , B , C } C_ D )
Assertion tpsscd
|- ( ph -> C e. D )

Proof

Step Hyp Ref Expression
1 tpsscd.1
 |-  ( ph -> C e. V )
2 tpsscd.2
 |-  ( ph -> { A , B , C } C_ D )
3 tprot
 |-  { A , B , C } = { B , C , A }
4 tprot
 |-  { B , C , A } = { C , A , B }
5 3 4 eqtri
 |-  { A , B , C } = { C , A , B }
6 5 2 eqsstrrid
 |-  ( ph -> { C , A , B } C_ D )
7 1 6 tpssad
 |-  ( ph -> C e. D )