Description: If an ordered triple is a subset of a class, the third element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpsscd.1 | |- ( ph -> C e. V ) |
|
| tpsscd.2 | |- ( ph -> { A , B , C } C_ D ) |
||
| Assertion | tpsscd | |- ( ph -> C e. D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpsscd.1 | |- ( ph -> C e. V ) |
|
| 2 | tpsscd.2 | |- ( ph -> { A , B , C } C_ D ) |
|
| 3 | tprot | |- { A , B , C } = { B , C , A } |
|
| 4 | tprot | |- { B , C , A } = { C , A , B } |
|
| 5 | 3 4 | eqtri | |- { A , B , C } = { C , A , B } |
| 6 | 5 2 | eqsstrrid | |- ( ph -> { C , A , B } C_ D ) |
| 7 | 1 6 | tpssad | |- ( ph -> C e. D ) |