Metamath Proof Explorer


Theorem tpsscd

Description: If an ordered triple is a subset of a class, the third element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses tpsscd.1 ( 𝜑𝐶𝑉 )
tpsscd.2 ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )
Assertion tpsscd ( 𝜑𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 tpsscd.1 ( 𝜑𝐶𝑉 )
2 tpsscd.2 ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )
3 tprot { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 }
4 tprot { 𝐵 , 𝐶 , 𝐴 } = { 𝐶 , 𝐴 , 𝐵 }
5 3 4 eqtri { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 , 𝐵 }
6 5 2 eqsstrrid ( 𝜑 → { 𝐶 , 𝐴 , 𝐵 } ⊆ 𝐷 )
7 1 6 tpssad ( 𝜑𝐶𝐷 )