Description: If an ordered triple is a subset of a class, the third element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpsscd.1 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| tpsscd.2 | ⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) | ||
| Assertion | tpsscd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpsscd.1 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 2 | tpsscd.2 | ⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) | |
| 3 | tprot | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } | |
| 4 | tprot | ⊢ { 𝐵 , 𝐶 , 𝐴 } = { 𝐶 , 𝐴 , 𝐵 } | |
| 5 | 3 4 | eqtri | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 , 𝐵 } |
| 6 | 5 2 | eqsstrrid | ⊢ ( 𝜑 → { 𝐶 , 𝐴 , 𝐵 } ⊆ 𝐷 ) |
| 7 | 1 6 | tpssad | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |