Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
General Set Theory
Unordered triples
tpsscd
Metamath Proof Explorer
Description: If an ordered triple is a subset of a class, the third element of the
triple is an element of that class. (Contributed by Thierry Arnoux , 2-Nov-2025)
Ref
Expression
Hypotheses
tpsscd.1
⊢ φ → C ∈ V
tpsscd.2
⊢ φ → A B C ⊆ D
Assertion
tpsscd
⊢ φ → C ∈ D
Proof
Step
Hyp
Ref
Expression
1
tpsscd.1
⊢ φ → C ∈ V
2
tpsscd.2
⊢ φ → A B C ⊆ D
3
tprot
⊢ A B C = B C A
4
tprot
⊢ B C A = C A B
5
3 4
eqtri
⊢ A B C = C A B
6
5 2
eqsstrrid
⊢ φ → C A B ⊆ D
7
1 6
tpssad
⊢ φ → C ∈ D