Metamath Proof Explorer


Theorem tpssg

Description: An ordered triplet of elements of a class is a subset of the class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Assertion tpssg ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ( 𝐴𝐷𝐵𝐷𝐶𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 df-3an ( ( 𝐴𝐷𝐵𝐷𝐶𝐷 ) ↔ ( ( 𝐴𝐷𝐵𝐷 ) ∧ 𝐶𝐷 ) )
2 prssg ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴𝐷𝐵𝐷 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐷 ) )
3 snssg ( 𝐶𝑋 → ( 𝐶𝐷 ↔ { 𝐶 } ⊆ 𝐷 ) )
4 2 3 bi2anan9 ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐶𝑋 ) → ( ( ( 𝐴𝐷𝐵𝐷 ) ∧ 𝐶𝐷 ) ↔ ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ) )
5 unss ( ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ↔ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ⊆ 𝐷 )
6 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
7 6 sseq1i ( { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ↔ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ⊆ 𝐷 )
8 5 7 bitr4i ( ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )
9 4 8 bitrdi ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐶𝑋 ) → ( ( ( 𝐴𝐷𝐵𝐷 ) ∧ 𝐶𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) )
10 1 9 bitrid ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝐶𝑋 ) → ( ( 𝐴𝐷𝐵𝐷𝐶𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) )
11 10 3impa ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ( 𝐴𝐷𝐵𝐷𝐶𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) )