| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐶 ∈ 𝐷 ) ) |
| 2 |
|
prssg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐷 ) ) |
| 3 |
|
snssg |
⊢ ( 𝐶 ∈ 𝑋 → ( 𝐶 ∈ 𝐷 ↔ { 𝐶 } ⊆ 𝐷 ) ) |
| 4 |
2 3
|
bi2anan9 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐶 ∈ 𝐷 ) ↔ ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ) ) |
| 5 |
|
unss |
⊢ ( ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ↔ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ⊆ 𝐷 ) |
| 6 |
|
df-tp |
⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) |
| 7 |
6
|
sseq1i |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ↔ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ⊆ 𝐷 ) |
| 8 |
5 7
|
bitr4i |
⊢ ( ( { 𝐴 , 𝐵 } ⊆ 𝐷 ∧ { 𝐶 } ⊆ 𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) |
| 9 |
4 8
|
bitrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) ∧ 𝐶 ∈ 𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) ) |
| 10 |
1 9
|
bitrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) ) |
| 11 |
10
|
3impa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷 ) ↔ { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 ) ) |