Metamath Proof Explorer


Theorem tpssd

Description: Deduction version of tpssi : An unordered triple of elements of a class is a subset of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses tpssd.1 ( 𝜑𝐴𝐷 )
tpssd.2 ( 𝜑𝐵𝐷 )
tpssd.3 ( 𝜑𝐶𝐷 )
Assertion tpssd ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )

Proof

Step Hyp Ref Expression
1 tpssd.1 ( 𝜑𝐴𝐷 )
2 tpssd.2 ( 𝜑𝐵𝐷 )
3 tpssd.3 ( 𝜑𝐶𝐷 )
4 tpssi ( ( 𝐴𝐷𝐵𝐷𝐶𝐷 ) → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )
5 1 2 3 4 syl3anc ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ⊆ 𝐷 )