Metamath Proof Explorer


Theorem tpssd

Description: Deduction version of tpssi : An unordered triple of elements of a class is a subset of that class. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses tpssd.1
|- ( ph -> A e. D )
tpssd.2
|- ( ph -> B e. D )
tpssd.3
|- ( ph -> C e. D )
Assertion tpssd
|- ( ph -> { A , B , C } C_ D )

Proof

Step Hyp Ref Expression
1 tpssd.1
 |-  ( ph -> A e. D )
2 tpssd.2
 |-  ( ph -> B e. D )
3 tpssd.3
 |-  ( ph -> C e. D )
4 tpssi
 |-  ( ( A e. D /\ B e. D /\ C e. D ) -> { A , B , C } C_ D )
5 1 2 3 4 syl3anc
 |-  ( ph -> { A , B , C } C_ D )