| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prssad.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
prssad.2 |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
| 3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝐴 ∈ 𝑉 ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝐵 ∈ V ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
| 6 |
|
prssg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ↔ { 𝐴 , 𝐵 } ⊆ 𝐶 ) ) |
| 7 |
6
|
biimpar |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V ) ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) |
| 8 |
3 4 5 7
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) |
| 9 |
8
|
simpld |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → 𝐴 ∈ 𝐶 ) |
| 10 |
|
prprc2 |
⊢ ( ¬ 𝐵 ∈ V → { 𝐴 , 𝐵 } = { 𝐴 } ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐵 } = { 𝐴 } ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
| 13 |
11 12
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → { 𝐴 } ⊆ 𝐶 ) |
| 14 |
|
snssg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝐶 ↔ { 𝐴 } ⊆ 𝐶 ) ) |
| 15 |
14
|
biimpar |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝐴 } ⊆ 𝐶 ) → 𝐴 ∈ 𝐶 ) |
| 16 |
1 13 15
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ V ) → 𝐴 ∈ 𝐶 ) |
| 17 |
9 16
|
pm2.61dan |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |