Metamath Proof Explorer


Theorem constrlccllem

Description: Constructible numbers are closed under line-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
constrlccllem.a ( 𝜑𝐴 ∈ Constr )
constrlccllem.b ( 𝜑𝐵 ∈ Constr )
constrlccllem.c ( 𝜑𝐺 ∈ Constr )
constrlccllem.e ( 𝜑𝐸 ∈ Constr )
constrlccllem.f ( 𝜑𝐹 ∈ Constr )
constrlccllem.t ( 𝜑𝑇 ∈ ℝ )
constrlccllem.x ( 𝜑𝑋 ∈ ℂ )
constrlccllem.1 ( 𝜑𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) )
constrlccllem.2 ( 𝜑 → ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝐹 ) ) )
Assertion constrlccllem ( 𝜑𝑋 ∈ Constr )

Proof

Step Hyp Ref Expression
1 constr0.1 𝐶 = rec ( ( 𝑠 ∈ V ↦ { 𝑥 ∈ ℂ ∣ ( ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑥 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ ( 𝑥 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑥𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑥𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑥𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) } ) , { 0 , 1 } )
2 constrlccllem.a ( 𝜑𝐴 ∈ Constr )
3 constrlccllem.b ( 𝜑𝐵 ∈ Constr )
4 constrlccllem.c ( 𝜑𝐺 ∈ Constr )
5 constrlccllem.e ( 𝜑𝐸 ∈ Constr )
6 constrlccllem.f ( 𝜑𝐹 ∈ Constr )
7 constrlccllem.t ( 𝜑𝑇 ∈ ℝ )
8 constrlccllem.x ( 𝜑𝑋 ∈ ℂ )
9 constrlccllem.1 ( 𝜑𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) )
10 constrlccllem.2 ( 𝜑 → ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝐹 ) ) )
11 peano2b ( 𝑛 ∈ ω ↔ suc 𝑛 ∈ ω )
12 11 biimpi ( 𝑛 ∈ ω → suc 𝑛 ∈ ω )
13 12 ad2antlr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → suc 𝑛 ∈ ω )
14 fveq2 ( 𝑚 = suc 𝑛 → ( 𝐶𝑚 ) = ( 𝐶 ‘ suc 𝑛 ) )
15 14 eleq2d ( 𝑚 = suc 𝑛 → ( 𝑋 ∈ ( 𝐶𝑚 ) ↔ 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) ) )
16 15 adantl ( ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) ∧ 𝑚 = suc 𝑛 ) → ( 𝑋 ∈ ( 𝐶𝑚 ) ↔ 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) ) )
17 8 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑋 ∈ ℂ )
18 id ( 𝑎 = 𝐴𝑎 = 𝐴 )
19 oveq2 ( 𝑎 = 𝐴 → ( 𝑏𝑎 ) = ( 𝑏𝐴 ) )
20 19 oveq2d ( 𝑎 = 𝐴 → ( 𝑡 · ( 𝑏𝑎 ) ) = ( 𝑡 · ( 𝑏𝐴 ) ) )
21 18 20 oveq12d ( 𝑎 = 𝐴 → ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) )
22 21 eqeq2d ( 𝑎 = 𝐴 → ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ↔ 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ) )
23 22 anbi1d ( 𝑎 = 𝐴 → ( ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
24 23 rexbidv ( 𝑎 = 𝐴 → ( ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
25 24 2rexbidv ( 𝑎 = 𝐴 → ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
26 oveq1 ( 𝑏 = 𝐵 → ( 𝑏𝐴 ) = ( 𝐵𝐴 ) )
27 26 oveq2d ( 𝑏 = 𝐵 → ( 𝑡 · ( 𝑏𝐴 ) ) = ( 𝑡 · ( 𝐵𝐴 ) ) )
28 27 oveq2d ( 𝑏 = 𝐵 → ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) )
29 28 eqeq2d ( 𝑏 = 𝐵 → ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ↔ 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ) )
30 29 anbi1d ( 𝑏 = 𝐵 → ( ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
31 30 rexbidv ( 𝑏 = 𝐵 → ( ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
32 31 2rexbidv ( 𝑏 = 𝐵 → ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝑏𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
33 oveq2 ( 𝑐 = 𝐺 → ( 𝑋𝑐 ) = ( 𝑋𝐺 ) )
34 33 fveq2d ( 𝑐 = 𝐺 → ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑋𝐺 ) ) )
35 34 eqeq1d ( 𝑐 = 𝐺 → ( ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
36 35 anbi2d ( 𝑐 = 𝐺 → ( ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
37 36 rexbidv ( 𝑐 = 𝐺 → ( ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
38 37 2rexbidv ( 𝑐 = 𝐺 → ( ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
39 2 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐴 ∈ Constr )
40 simpr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) )
41 40 unssad ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → { 𝐴 , 𝐵 , 𝐺 } ⊆ ( 𝐶𝑛 ) )
42 39 41 tpssad ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐴 ∈ ( 𝐶𝑛 ) )
43 3 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐵 ∈ Constr )
44 43 41 tpssbd ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐵 ∈ ( 𝐶𝑛 ) )
45 4 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐺 ∈ Constr )
46 45 41 tpsscd ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐺 ∈ ( 𝐶𝑛 ) )
47 oveq1 ( 𝑒 = 𝐸 → ( 𝑒𝑓 ) = ( 𝐸𝑓 ) )
48 47 fveq2d ( 𝑒 = 𝐸 → ( abs ‘ ( 𝑒𝑓 ) ) = ( abs ‘ ( 𝐸𝑓 ) ) )
49 48 eqeq2d ( 𝑒 = 𝐸 → ( ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ↔ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝑓 ) ) ) )
50 49 anbi2d ( 𝑒 = 𝐸 → ( ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝑓 ) ) ) ) )
51 oveq2 ( 𝑓 = 𝐹 → ( 𝐸𝑓 ) = ( 𝐸𝐹 ) )
52 51 fveq2d ( 𝑓 = 𝐹 → ( abs ‘ ( 𝐸𝑓 ) ) = ( abs ‘ ( 𝐸𝐹 ) ) )
53 52 eqeq2d ( 𝑓 = 𝐹 → ( ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝑓 ) ) ↔ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝐹 ) ) ) )
54 53 anbi2d ( 𝑓 = 𝐹 → ( ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝑓 ) ) ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝐹 ) ) ) ) )
55 oveq1 ( 𝑡 = 𝑇 → ( 𝑡 · ( 𝐵𝐴 ) ) = ( 𝑇 · ( 𝐵𝐴 ) ) )
56 55 oveq2d ( 𝑡 = 𝑇 → ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) )
57 56 eqeq2d ( 𝑡 = 𝑇 → ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ↔ 𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) ) )
58 57 anbi1d ( 𝑡 = 𝑇 → ( ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝐹 ) ) ) ↔ ( 𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝐹 ) ) ) ) )
59 5 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐸 ∈ Constr )
60 40 unssbd ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → { 𝐸 , 𝐹 } ⊆ ( 𝐶𝑛 ) )
61 59 60 prssad ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐸 ∈ ( 𝐶𝑛 ) )
62 6 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐹 ∈ Constr )
63 62 60 prssbd ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝐹 ∈ ( 𝐶𝑛 ) )
64 7 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑇 ∈ ℝ )
65 9 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) )
66 10 ad2antrr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝐹 ) ) )
67 65 66 jca ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → ( 𝑋 = ( 𝐴 + ( 𝑇 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝐸𝐹 ) ) ) )
68 50 54 58 61 63 64 67 3rspcedvdw ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝐴 + ( 𝑡 · ( 𝐵𝐴 ) ) ) ∧ ( abs ‘ ( 𝑋𝐺 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
69 25 32 38 42 44 46 68 3rspcedvdw ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) )
70 69 3mix2d ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑋𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑋𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) )
71 nnon ( 𝑛 ∈ ω → 𝑛 ∈ On )
72 71 ad2antlr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑛 ∈ On )
73 eqid ( 𝐶𝑛 ) = ( 𝐶𝑛 )
74 1 72 73 constrsuc ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → ( 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) ↔ ( 𝑋 ∈ ℂ ∧ ( ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ∃ 𝑟 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ 𝑋 = ( 𝑐 + ( 𝑟 · ( 𝑑𝑐 ) ) ) ∧ ( ℑ ‘ ( ( ∗ ‘ ( 𝑏𝑎 ) ) · ( 𝑑𝑐 ) ) ) ≠ 0 ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ∃ 𝑡 ∈ ℝ ( 𝑋 = ( 𝑎 + ( 𝑡 · ( 𝑏𝑎 ) ) ) ∧ ( abs ‘ ( 𝑋𝑐 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ∨ ∃ 𝑎 ∈ ( 𝐶𝑛 ) ∃ 𝑏 ∈ ( 𝐶𝑛 ) ∃ 𝑐 ∈ ( 𝐶𝑛 ) ∃ 𝑑 ∈ ( 𝐶𝑛 ) ∃ 𝑒 ∈ ( 𝐶𝑛 ) ∃ 𝑓 ∈ ( 𝐶𝑛 ) ( 𝑎𝑑 ∧ ( abs ‘ ( 𝑋𝑎 ) ) = ( abs ‘ ( 𝑏𝑐 ) ) ∧ ( abs ‘ ( 𝑋𝑑 ) ) = ( abs ‘ ( 𝑒𝑓 ) ) ) ) ) ) )
75 17 70 74 mpbir2and ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑋 ∈ ( 𝐶 ‘ suc 𝑛 ) )
76 13 16 75 rspcedvd ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → ∃ 𝑚 ∈ ω 𝑋 ∈ ( 𝐶𝑚 ) )
77 1 isconstr ( 𝑋 ∈ Constr ↔ ∃ 𝑚 ∈ ω 𝑋 ∈ ( 𝐶𝑚 ) )
78 76 77 sylibr ( ( ( 𝜑𝑛 ∈ ω ) ∧ ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) ) → 𝑋 ∈ Constr )
79 2 3 4 tpssd ( 𝜑 → { 𝐴 , 𝐵 , 𝐺 } ⊆ Constr )
80 5 6 prssd ( 𝜑 → { 𝐸 , 𝐹 } ⊆ Constr )
81 79 80 unssd ( 𝜑 → ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ Constr )
82 tpfi { 𝐴 , 𝐵 , 𝐺 } ∈ Fin
83 82 a1i ( 𝜑 → { 𝐴 , 𝐵 , 𝐺 } ∈ Fin )
84 prfi { 𝐸 , 𝐹 } ∈ Fin
85 84 a1i ( 𝜑 → { 𝐸 , 𝐹 } ∈ Fin )
86 83 85 unfid ( 𝜑 → ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ∈ Fin )
87 1 81 86 constrfiss ( 𝜑 → ∃ 𝑛 ∈ ω ( { 𝐴 , 𝐵 , 𝐺 } ∪ { 𝐸 , 𝐹 } ) ⊆ ( 𝐶𝑛 ) )
88 78 87 r19.29a ( 𝜑𝑋 ∈ Constr )