Metamath Proof Explorer
		
		
		
		Description:  The union of two finite sets is finite.  (Contributed by Glauco
       Siliprandi, 5-Feb-2022)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						unfid.1 | 
						⊢ ( 𝜑  →  𝐴  ∈  Fin )  | 
					
					
						 | 
						 | 
						unfid.2 | 
						⊢ ( 𝜑  →  𝐵  ∈  Fin )  | 
					
				
					 | 
					Assertion | 
					unfid | 
					⊢  ( 𝜑  →  ( 𝐴  ∪  𝐵 )  ∈  Fin )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							unfid.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  Fin )  | 
						
						
							| 2 | 
							
								
							 | 
							unfid.2 | 
							⊢ ( 𝜑  →  𝐵  ∈  Fin )  | 
						
						
							| 3 | 
							
								
							 | 
							unfi | 
							⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( 𝐴  ∪  𝐵 )  ∈  Fin )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐴  ∪  𝐵 )  ∈  Fin )  |