Metamath Proof Explorer
Description: The union of two finite sets is finite. (Contributed by Glauco
Siliprandi, 5-Feb-2022)
|
|
Ref |
Expression |
|
Hypotheses |
unfid.1 |
|
|
|
unfid.2 |
|
|
Assertion |
unfid |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unfid.1 |
|
| 2 |
|
unfid.2 |
|
| 3 |
|
unfi |
|
| 4 |
1 2 3
|
syl2anc |
|