Metamath Proof Explorer


Theorem constrlccllem

Description: Constructible numbers are closed under line-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
constrlccllem.a φ A Constr
constrlccllem.b φ B Constr
constrlccllem.c φ G Constr
constrlccllem.e φ E Constr
constrlccllem.f φ F Constr
constrlccllem.t φ T
constrlccllem.x φ X
constrlccllem.1 φ X = A + T B A
constrlccllem.2 φ X G = E F
Assertion constrlccllem φ X Constr

Proof

Step Hyp Ref Expression
1 constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
2 constrlccllem.a φ A Constr
3 constrlccllem.b φ B Constr
4 constrlccllem.c φ G Constr
5 constrlccllem.e φ E Constr
6 constrlccllem.f φ F Constr
7 constrlccllem.t φ T
8 constrlccllem.x φ X
9 constrlccllem.1 φ X = A + T B A
10 constrlccllem.2 φ X G = E F
11 peano2b n ω suc n ω
12 11 biimpi n ω suc n ω
13 12 ad2antlr φ n ω A B G E F C n suc n ω
14 fveq2 m = suc n C m = C suc n
15 14 eleq2d m = suc n X C m X C suc n
16 15 adantl φ n ω A B G E F C n m = suc n X C m X C suc n
17 8 ad2antrr φ n ω A B G E F C n X
18 id a = A a = A
19 oveq2 a = A b a = b A
20 19 oveq2d a = A t b a = t b A
21 18 20 oveq12d a = A a + t b a = A + t b A
22 21 eqeq2d a = A X = a + t b a X = A + t b A
23 22 anbi1d a = A X = a + t b a X c = e f X = A + t b A X c = e f
24 23 rexbidv a = A t X = a + t b a X c = e f t X = A + t b A X c = e f
25 24 2rexbidv a = A e C n f C n t X = a + t b a X c = e f e C n f C n t X = A + t b A X c = e f
26 oveq1 b = B b A = B A
27 26 oveq2d b = B t b A = t B A
28 27 oveq2d b = B A + t b A = A + t B A
29 28 eqeq2d b = B X = A + t b A X = A + t B A
30 29 anbi1d b = B X = A + t b A X c = e f X = A + t B A X c = e f
31 30 rexbidv b = B t X = A + t b A X c = e f t X = A + t B A X c = e f
32 31 2rexbidv b = B e C n f C n t X = A + t b A X c = e f e C n f C n t X = A + t B A X c = e f
33 oveq2 c = G X c = X G
34 33 fveq2d c = G X c = X G
35 34 eqeq1d c = G X c = e f X G = e f
36 35 anbi2d c = G X = A + t B A X c = e f X = A + t B A X G = e f
37 36 rexbidv c = G t X = A + t B A X c = e f t X = A + t B A X G = e f
38 37 2rexbidv c = G e C n f C n t X = A + t B A X c = e f e C n f C n t X = A + t B A X G = e f
39 2 ad2antrr φ n ω A B G E F C n A Constr
40 simpr φ n ω A B G E F C n A B G E F C n
41 40 unssad φ n ω A B G E F C n A B G C n
42 39 41 tpssad φ n ω A B G E F C n A C n
43 3 ad2antrr φ n ω A B G E F C n B Constr
44 43 41 tpssbd φ n ω A B G E F C n B C n
45 4 ad2antrr φ n ω A B G E F C n G Constr
46 45 41 tpsscd φ n ω A B G E F C n G C n
47 oveq1 e = E e f = E f
48 47 fveq2d e = E e f = E f
49 48 eqeq2d e = E X G = e f X G = E f
50 49 anbi2d e = E X = A + t B A X G = e f X = A + t B A X G = E f
51 oveq2 f = F E f = E F
52 51 fveq2d f = F E f = E F
53 52 eqeq2d f = F X G = E f X G = E F
54 53 anbi2d f = F X = A + t B A X G = E f X = A + t B A X G = E F
55 oveq1 t = T t B A = T B A
56 55 oveq2d t = T A + t B A = A + T B A
57 56 eqeq2d t = T X = A + t B A X = A + T B A
58 57 anbi1d t = T X = A + t B A X G = E F X = A + T B A X G = E F
59 5 ad2antrr φ n ω A B G E F C n E Constr
60 40 unssbd φ n ω A B G E F C n E F C n
61 59 60 prssad φ n ω A B G E F C n E C n
62 6 ad2antrr φ n ω A B G E F C n F Constr
63 62 60 prssbd φ n ω A B G E F C n F C n
64 7 ad2antrr φ n ω A B G E F C n T
65 9 ad2antrr φ n ω A B G E F C n X = A + T B A
66 10 ad2antrr φ n ω A B G E F C n X G = E F
67 65 66 jca φ n ω A B G E F C n X = A + T B A X G = E F
68 50 54 58 61 63 64 67 3rspcedvdw φ n ω A B G E F C n e C n f C n t X = A + t B A X G = e f
69 25 32 38 42 44 46 68 3rspcedvdw φ n ω A B G E F C n a C n b C n c C n e C n f C n t X = a + t b a X c = e f
70 69 3mix2d φ n ω A B G E F C n a C n b C n c C n d C n t r X = a + t b a X = c + r d c b a d c 0 a C n b C n c C n e C n f C n t X = a + t b a X c = e f a C n b C n c C n d C n e C n f C n a d X a = b c X d = e f
71 nnon n ω n On
72 71 ad2antlr φ n ω A B G E F C n n On
73 eqid C n = C n
74 1 72 73 constrsuc φ n ω A B G E F C n X C suc n X a C n b C n c C n d C n t r X = a + t b a X = c + r d c b a d c 0 a C n b C n c C n e C n f C n t X = a + t b a X c = e f a C n b C n c C n d C n e C n f C n a d X a = b c X d = e f
75 17 70 74 mpbir2and φ n ω A B G E F C n X C suc n
76 13 16 75 rspcedvd φ n ω A B G E F C n m ω X C m
77 1 isconstr X Constr m ω X C m
78 76 77 sylibr φ n ω A B G E F C n X Constr
79 2 3 4 tpssd φ A B G Constr
80 5 6 prssd φ E F Constr
81 79 80 unssd φ A B G E F Constr
82 tpfi A B G Fin
83 82 a1i φ A B G Fin
84 prfi E F Fin
85 84 a1i φ E F Fin
86 83 85 unfid φ A B G E F Fin
87 1 81 86 constrfiss φ n ω A B G E F C n
88 78 87 r19.29a φ X Constr