Step |
Hyp |
Ref |
Expression |
1 |
|
constr0.1 |
|
2 |
|
constrsuc.1 |
|
3 |
|
constrsuc.2 |
|
4 |
1
|
fveq1i |
|
5 |
|
rdgsuc |
|
6 |
2 5
|
syl |
|
7 |
4 6
|
eqtrid |
|
8 |
1
|
fveq1i |
|
9 |
3 8
|
eqtri |
|
10 |
9
|
fveq2i |
|
11 |
7 10
|
eqtr4di |
|
12 |
11
|
eleq2d |
|
13 |
|
eqid |
|
14 |
|
id |
|
15 |
|
rexeq |
|
16 |
14 15
|
rexeqbidv |
|
17 |
14 16
|
rexeqbidv |
|
18 |
14 17
|
rexeqbidv |
|
19 |
|
rexeq |
|
20 |
14 19
|
rexeqbidv |
|
21 |
14 20
|
rexeqbidv |
|
22 |
14 21
|
rexeqbidv |
|
23 |
14 22
|
rexeqbidvv |
|
24 |
|
rexeq |
|
25 |
14 24
|
rexeqbidv |
|
26 |
14 25
|
rexeqbidv |
|
27 |
14 26
|
rexeqbidv |
|
28 |
14 27
|
rexeqbidv |
|
29 |
14 28
|
rexeqbidvv |
|
30 |
18 23 29
|
3orbi123d |
|
31 |
30
|
rabbidv |
|
32 |
31
|
adantl |
|
33 |
3
|
fvexi |
|
34 |
33
|
a1i |
|
35 |
|
cnex |
|
36 |
|
ssrab2 |
|
37 |
35 36
|
ssexi |
|
38 |
37
|
a1i |
|
39 |
13 32 34 38
|
fvmptd2 |
|
40 |
39
|
eleq2d |
|
41 |
|
eqeq1 |
|
42 |
|
eqeq1 |
|
43 |
41 42
|
3anbi12d |
|
44 |
43
|
2rexbidv |
|
45 |
44
|
2rexbidv |
|
46 |
45
|
2rexbidv |
|
47 |
|
fvoveq1 |
|
48 |
47
|
eqeq1d |
|
49 |
41 48
|
anbi12d |
|
50 |
49
|
2rexbidv |
|
51 |
50
|
2rexbidv |
|
52 |
51
|
2rexbidv |
|
53 |
|
fvoveq1 |
|
54 |
53
|
eqeq1d |
|
55 |
|
fvoveq1 |
|
56 |
55
|
eqeq1d |
|
57 |
54 56
|
3anbi23d |
|
58 |
57
|
2rexbidv |
|
59 |
58
|
2rexbidv |
|
60 |
59
|
2rexbidv |
|
61 |
46 52 60
|
3orbi123d |
|
62 |
61
|
cbvrabv |
|
63 |
62
|
eleq2i |
|
64 |
|
eqeq1 |
|
65 |
|
eqeq1 |
|
66 |
64 65
|
3anbi12d |
|
67 |
66
|
2rexbidv |
|
68 |
67
|
2rexbidv |
|
69 |
68
|
2rexbidv |
|
70 |
|
fvoveq1 |
|
71 |
70
|
eqeq1d |
|
72 |
64 71
|
anbi12d |
|
73 |
72
|
2rexbidv |
|
74 |
73
|
2rexbidv |
|
75 |
74
|
2rexbidv |
|
76 |
|
fvoveq1 |
|
77 |
76
|
eqeq1d |
|
78 |
|
fvoveq1 |
|
79 |
78
|
eqeq1d |
|
80 |
77 79
|
3anbi23d |
|
81 |
80
|
2rexbidv |
|
82 |
81
|
2rexbidv |
|
83 |
82
|
2rexbidv |
|
84 |
69 75 83
|
3orbi123d |
|
85 |
84
|
elrab |
|
86 |
63 85
|
bitri |
|
87 |
86
|
a1i |
|
88 |
12 40 87
|
3bitrd |
|